Generative AI
2.34K subscribers
139 photos
34 videos
4 files
134 links
@haarrp - по всем вопросам
Download Telegram
Forwarded from Machinelearning
✔️ Ученые добились телепортации с помощью квантового суперкомпьютера.

Исследователи из Оксфордского университета впервые продемонстрировали распределенные квантовые вычисления (DQC) между 2 модулями с захваченными ионами, соединенными оптической сетью. В эксперименте статьи, опубликованной в Nature, ученые использовали квантовую телепортацию для передачи управляемого гейта CZ между модулями с точностью 86%. Это достижение позволяет выполнять сложные квантовые алгоритмы, например алгоритм Гровера, с успешностью 71%.

Распределенная архитектура DQC позволит в будущем создавать крупномасштабные квантовые компьютеры, объединяя несколько модулей через квантовые и классические каналы связи.
independent.co.uk

✔️ Илон Маск вместе с группой анонимных инвесторов подал заявку на покупку OpenAI за 97 миллиардов долларов. Они настаивают на том, чтобы компания вернулась к открытой модели кода и работала ради общественного блага. Сэм Альтман, подтвердив эту новость, пошутил о покупке Twitter за 9 миллиардов долларов. Маску эта шутка не понравилась, он обвинил Альтмана в мошенничестве. Это уже второй раз, когда предпринимаются попытки вытеснить Альтмана из OpenAI, причем сейчас против него выступает сам Маск, который является одним из наиболее влиятельных людей в Америке.

✔️ Anthropic создала "Экономический индекс" для изучения влияния ИИ на рынок труда.

Anthropic представила Экономический индекс, направленный на изучение влияния ИИ на рынок труда и экономику. Первый отчет основан на анализе миллионов анонимных диалогов с Claude. Согласно ему, ИИ чаще применяется для расширения человеческих возможностей (57%), чем для полной автоматизации задач (43%). Наибольшее внедрение ИИ наблюдается в сферах разработки ПО и написания технических статей, а в низкооплачиваемых и высокооплачиваемых профессиях его использование ограничено. Anthropic открывает доступ к данным индекса для дальнейших исследований.
anthropic.com

✔️ OpenAI разрабатывает собственный чип для снижения зависимости от Nvidia.

Компания активно работает над созданием собственного чипа, чтобы уменьшить зависимость от поставок Nvidia. Дизайн первого поколения чипа будет завершён в ближайшие месяцы, а его производство планируется на базе TSMC с использованием 3-нм технологии.

Команду разработчиков возглавляет Ричард Хо, ранее работавший в Google. Чип предназначен для обучения и запуска моделей ИИ, но изначально будет использоваться в ограниченных масштабах. Массовое производство планируется начать в 2026 году.
reuters.com

✔️ Запущен архив данных data.gov

Library Innovation Lab (Гарвардский университет) запустила архив данных data.gov на платформе Source Cooperative. Коллекция объемом 16 ТБ включает более 311 000 наборов данных, собранных в 2024 и 2025 годах, и представляет собой полный архив федеральных публичных данных, связанных через data.gov. Архив будет ежедневно обновляться по мере добавления новых данных.

Этот проект является частью инициативы по сохранению важных публичных данных для академических исследований и общественного использования. Также опубликовано открытое ПО для создания подобных репозиториев. Проект поддерживается Filecoin Foundation и Rockefeller Brothers Fund.
lil.law.harvard.edu

✔️ Тысячи художников требуют отменить аукцион AI-искусства, обвиняя технологии в "массовой краже".

Сообщество художников призывают аукционный дом Christie’s отменить продажу произведений искусства, созданных с помощью ИИ, утверждая, что технологии, стоящие за этими работами, совершают "массовую кражу". Аукцион Augmented Intelligence, который Christie’s называет первым крупным аукционом, посвящённым ИИ, включает 20 лотов с ценами от $10 000 до $250 000.

В открытом письме, которое подписало более 3000 человек, говорится, что многие работы созданы с использованием моделей ИИ, обученных на защищённых авторским правом произведениях без разрешения их авторов. Художники обвиняют создателей в эксплуатации их труда для коммерческих продуктов. Christie’s заявляет, что в большинстве случаев ИИ обучался на данных, предоставленных самими художниками.
theguardian.com

#ml #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Hugging Face Agents Course — это бесплатный онлайн-курс, посвященный изучению AI-агентов!

🌟 Курс охватывает теоретические основы, проектирование и практическое применение агентов, а также знакомит с популярными библиотеками, такими как smolagents, LangChain и LlamaIndex. Участники научатся создавать собственных агентов, интегрировать их с различными инструментами и делиться своими разработками на платформе Hugging Face.

🔐 Лицензия: Apache-2.0

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
📖 Эта статья посвящена оптимизации производительности моделей глубокого обучения!

💡 Автор рассматривает три ключевых компонента, влияющих на эффективность работы: вычисления (compute), пропускная способность памяти (memory bandwidth) и накладные расходы (overhead). Понимание того, какой из этих факторов является узким местом в конкретной системе, позволяет целенаправленно применять оптимизационные стратегии.

🔗 Ссылка: *клик*

#deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Gemini теперь "помнит" историю чатов.

Google расширила возможности Gemini, внедрив функцию запоминания прошлых разговоров для подписчиков Gemini Advanced через Google One AI Premium. Это обновление позволяет Gemini предоставлять более релевантные ответы. Новая функция доступна на английском языке в веб-версии и мобильном приложении Gemini. Google планирует добавить поддержку других языков, а также для бизнес- и корпоративных клиентов Google Workspace в ближайшие недели.
blog.google

✔️ Увеличение частоты таймера ядра Linux повышает производительность ИИ.

Предложение инженера Google об увеличении частоты таймера ядра Linux с 250 до 1000 Гц вызвало интерес в технологическом сообществе и сервис Phoronix провел A/B-тестирование, чтобы оценить влияние этого изменения. Наиболее заметные улучшения наблюдались в ускорении LLM. В других задачах влияние было минимальным и находилось в пределах погрешности измерений системы. Основная идея Кайса Юсефа заключалась в том, что увеличение частоты таймера приведет к улучшению отзывчивости системы и позволит решить проблемы, связанные с 250 Гц: неточные временные интервалы и задержки в балансировке нагрузки.

Тестирование проводилось на AMD Ryzen 9 9950X, 32 ГБ ОЗУ и GPU Radeon RX 7900 XTX. Наибольший прирост производительности наблюдался с Llama, где увеличение частоты таймера привело к росту производительности на 10%.
tomshardware.com

✔️ Apple предложила парадигму претрейна и трансферного обучения для ускорения физического моделирования.

Apple Machine Learning Research опубликовало исследование метода трансферного обучения для графовых нейронных сетей, который значительно улучшает эффективность и точность физического моделирования сложных систем. В работе представлена масштабируемая графовая U-NET (SGUNET), способная адаптироваться к различным размерам сетки и разрешениям.
Предложенный метод позволяет использовать предварительно обученные модели на большом наборе данных (ABC Deformable - ABCD), содержащем 20 000 физических симуляций 3D-форм, для последующей тонкой настройки на целевых задачах с меньшим количеством данных. Это значительно снижает затраты на сбор и аннотацию данных.

Эксперименты на 2 датасетах (2D Deformable Plate и 3D Deforming Plate) показали, что модель, предварительно обученная на ABCD и дообученная на 1/16 части данных, демонстрирует улучшение RMSE на 11.05% по сравнению с моделью, обученной с нуля.
machinelearning.apple.com

✔️ GenAI снижает когнитивные усилия и вредит критическому мышлению.

Microsoft и Университет Карнеги опубликовали ресёрч о том, что генеративный ИИ оказывает двоякое влияние на когнитивные процессы человека. С одной стороны, ИИ-инструменты снижают воспринимаемую сложность задач, требующих критического мышления. С другой стороны, чрезмерная уверенность в возможностях ИИ приводит к снижению критического мышления и зависимости от сгенерированного контента.

Анализ опроса 319 представителей умственного труда показал, что работники чаще всего используют критическое мышление для обеспечения качества своей работы. При этом, чем выше уверенность работника в собственных навыках, тем больше усилий он прилагает для оценки результатов, предоставляемых ИИ. И наоборот, чем выше уверенность в возможностях ИИ, тем меньше усилий затрачивается на критическое мышление. Исследование также выявило изменения в структуре когнитивных усилий при использовании ИИ - они смещаются от сбора информации к ее проверке, от решения проблем к адаптации ответов ИИ и от выполнения задач к контролю за процессом.
microsoft.com

✔️ OpenAI советует упростить промпты для новых моделей рассуждений.

Новые рекомендации OpenAI указывают на то, что для эффективного использования моделей серии o, стоит отходить от сложных техник промпт-инжиниринга в пользу простых и прямых инструкций. OpenAI предостерегает от использования "boomer prompts" и инструкций вроде "думай шаг за шагом" для этих моделей. Вместо этого рекомендуется давать краткие, четко структурированные указания с использованием разделителей (XML-теги) и четко определять критерии успеха или ограничения.
platform.openai.com
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Forwarded from Machinelearning
🔥 Бесплатный курс от Microsoft «ИИ-агенты для начинающих»

Курс содержит пошаговые инструкции с примерами кода, которые помогут научиться создавать автономных агентов с использованием машинного обучения.

Фокус на AI-агентах:
Если вас интересует именно разработка агентов — например, для симуляций, игр или интерактивных систем — данный курс будет полезен.

Каждый урок включает в себя:
- Лекцию, (видео уроки появятся в марте 2025 года)
- Примеры кода на Python с поддержкой Azure AI Foundry и Github Models
- Практические задания
- Ссылки на полезные дополнительные ресурсы

Если это ваш первый опыт работы с агентами, у Microsoft есть еще 1 курс «Генеративный ИИ для начинающих», который содержит 21 урок по построению моделей с помощью GenAI, лучше начать с него.

Переведен на 9 различных языков (русского нет).

Github

@ai_machinelearning_big_data

#course #Microsoft #aiagents #ai #ml #opensource #freecourse
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
🔥 The Ultra-Scale Playbook: руководство по обучению крупных языковых моделей на GPU-кластерах!

💡 Это руководство посвящено обучению больших языковых моделей на масштабируемых GPU-кластерах. В рамках этого проекта было проведено более 4000 экспериментов по масштабированию на кластере с использованием до 512 GPU, с целью измерения пропускной способности и эффективности обучения.

🔗 Ссылка: *клик*

#курс #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
1🤮1
Forwarded from Machinelearning
⚡️ EasyR1 – эффективный и масштабируемый фреймворк для обучения с подкреплением (RL) с поддержкой мультимодальных данных.

Чем интересен EasyR1?
EasyR1 сочетает в себе алгоритм GRPO, продемонстрированный в DeepSeek R1, и расширение системы veRL для поддержки vision-language моделей, таких как Qwen2.5-VL.

Уже после 30 шагов обучения фреймворк показал прирост производительности на 5% в экспериментах на тестовом наборе Geometry3k.

Это делает его привлекательным инструментом для исследователей и разработчиков, работающих с задачами, где объединяются визуальные и текстовые данные.

Фреймворк спроектирован так, чтобы быть масштабируемым и легко интегрироваться с различными алгоритмами RL, что открывает широкие возможности для дальнейших исследований.

Ожидайте будущих обновлений – в них планируется интеграция дополнительных алгоритмов RL и новых архитектур VLM.

Github

#EasyR1 #opensource #GRPO #VLM
1👍1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Модель Wan2.1-T2V-14B от команды Wan-AI – новый топовый опенсорс инструмент генерации видео, который объединяет в себе несколько интересных особенностей.

⚡️ Мощная архитектура yf 14 млрд параметров

Модель способна детально прорабатывать сцены и динамику, генерируя высококачественные видео, где каждая деталь выглядит реалистично.

Модель поддерживает:

- Text-to-Video: генерация видео по текстовым запросам.
Image-to-Video: преобразование статических изображений в анимированные видеоролики.
- Видео-редактирование: внесение изменений в уже существующие видео.
- Text-to-Image: создание изображений на основе текста.
- Video-to-Audio: синтез аудио, соответствующих содержанию видео.
Такая универсальность делает модель полезной для широкого спектра приложений.

Использование видео VAE (вариационного автоэнкодера)
В основе модели лежит мощный видео VAE, который эффективно кодирует и декодирует видеоконтент. Это позволяет:

- Обрабатывать видео высокого разрешения (до 1080p).
- Сохранять временную динамику и последовательность кадров.
- Обеспечивать плавное и согласованное воспроизведение движения.
- Оптимизация для потребительских видеокарт

Несмотря на свои масштабы, модель оптимизирована для работы на современных GPU.

Например, версия T2V-1.3B требует всего 8,19 ГБпамяти и способна генерировать 5-секундное видео с разрешением 480p примерно за 4 минуты на RTX 4090 без применения дополнительных оптимизаций.

Как работает:

Ввод данных: Пользователь может задать текстовое описание, предоставить изображение или даже видео, в зависимости от задачи.
Кодирование: Виде VAE преобразует входные данные в компактное представление, сохраняя при этом критически важную информацию о сцене и динамике.
Генерация: На основе этого представления и с использованием огромного количества параметров модель генерирует новый видеоряд, который соответствует заданному описанию или образцу.
Декодирование: Затем VAE декодирует это представление обратно в полноценное видео, где соблюдаются все временные и визуальные детали.

Таким образом, Wan2.1-T2V-14B выделяется своей способностью не только создавать качественные видео по текстовому описанию, но и решать множество сопутствующих задач (от редактирования до генерации аудио), оставаясь при этом оптимизированной для работы на доступном оборудовании.

Это делает её одной из самых перспективных разработок в области генеративного видео на сегодняшний день.

🟡 Github: https://github.com/Wan-Video/Wan2.1/
🟡HF: https://huggingface.co/Wan-AI/Wan2.1-T2V-14B
🟡Model Scope: https://modelscope.cn/organization/Wan-AI

@ai_machinelearning_big_data

#TexttoVideo #ai #ml #video #wanai
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 MM-EUREKA: Мультимодальный ризонинг.

MM-Eureka — разработка Шанхайской лаборатории ИИ, которая совершила шаг вперед в решении задач, требующих анализа изображений и текста. В отличие от рядовых VLM, эта модель сочетает RL с мультимодальным мышлением, имитируя человеческую способность, схожую с «моментами озарения». Авторы заявляют, что MM-Eureka не только обладает повышенной точностью ответов, но и учится перепроверять визуальные данные с помошью рассуждений.

MM-Eureka суперэффективна: даже при обучении на 0,05% данных от аналогов, модель превзошла их в тестах на математическую логику и анализ графиков. Например, в задачах уровня школьной программы она показала рост точности на 8,2%. При этом тестовая модель, не имея явных инструкций, научилась «переосмысливать» изображения — заново оценивать геометрические схемы для поиска ошибок.

В основе MM-Eureka - модели InternVL2.5 с параметрами 8 и 38 млрд. Архитектура объединяет механизмы внимания для анализа визуальных паттернов и языковые слои для генерации ответов.

Обучение строилось на алгоритме RLOO (REINFORCE Leave-One-Out), который снижает шум в оценках преимуществ, и PPO-clip, предотвращающем резкие изменения политики. Авторы отказались от ограничений KL-дивергенции, чтобы не сдерживать «творческий» поиск решений. Функция вознаграждения включала проверку точности ответов через Math-Verify и соблюдение структуры вывода, чтобы усилить логическую строгость.

▶️В релиз вошли 2 модели, датасет и код для самостоятельных изысканий в обучении:

🟢MM-Eureka-8B
🟢MM-Eureka-Zero-38B
🟠MM-Eureka-Dataset


📌Лицензирование: Apache 2.0 License.


🟡Набор моделей
🟡Техотчет
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Reasoning #MMEUREKA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🔥 Stable Virtual Camera – релиз от Stability AI: модель генерации 3D видео из 2D изображений.

Эта разработка, представленная в исследовательском превью, позволяет создавать реалистичные 3D видео без сложной реконструкции сцены или специализированной оптимизации.

🌟 Основные моменты:

▶️ Модель использует мультивью диффузию для преобразования обычных 2D изображений в объемные 3D видео с достоверной глубиной и перспективой.
▶️ Динамическое управление камерой: поддерживаются не только стандартные движения, но и 14 различных траекторий, включая 360°, Лемнискату, Спираль, Dolly Zoom и другие, что позволяет создавать уникальные кинематографические эффекты.
▶️ Гибкость входных данных: возможность генерировать 3D видео, используя как одно изображение, так и до 32 изображений.
▶️ Продвинутая архитектура: применение двухпроходного процедурного сэмплинга обеспечивает плавные переходы даже в видео длиной до 1000 кадров, гарантируя непрерывное и стабильное отображение движения.
▶️ Преимущество перед конкурентами: в тестах на синтез новых точек обзора (NVS) модель показывает хорошие результаты, превосходя такие инструменты, как ViewCrafter и CAT3D, благодаря оптимальному соотношению генеративного потенциала и плавности временных переходов.

Релиз доступен для исследовательского использования под некоммерческой лицензией.

🟡Релиз: https://stability.ai/news/introducing-stable-virtual-camera-multi-view-video-generation-with-3d-camera-control
🟡Статья: https://stability.ai/s/stable-virtual-camera.pdf
Веса: https://huggingface.co/stabilityai/stable-virtual-camera
🖥 Github: https://github.com/Stability-AI/stable-virtual-camera

@ai_machinelearning_big_data


#stability #ai #ml #release
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM