๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Learn Fundamental Skills with Free Online Courses & Earn Certificates
- AI
- GenAI
- Data Science,
- BigData
- Python
- Cloud Computing
- Machine Learning
- Cyber Security
๐๐ข๐ง๐ค ๐:-
https://linkpd.in/freecourses
Enroll for FREE & Get Certified ๐
Learn Fundamental Skills with Free Online Courses & Earn Certificates
- AI
- GenAI
- Data Science,
- BigData
- Python
- Cloud Computing
- Machine Learning
- Cyber Security
๐๐ข๐ง๐ค ๐:-
https://linkpd.in/freecourses
Enroll for FREE & Get Certified ๐
โค4
Complete roadmap to learn Python and Data Structures & Algorithms (DSA) in 2 months
### Week 1: Introduction to Python
Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions
Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules
Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode
### Week 2: Advanced Python Concepts
Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions
Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files
Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation
Day 14: Practice Day
- Solve intermediate problems on coding platforms
### Week 3: Introduction to Data Structures
Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists
Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues
Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions
Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues
### Week 4: Fundamental Algorithms
Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort
Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis
Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques
Day 28: Practice Day
- Solve problems on sorting, searching, and hashing
### Week 5: Advanced Data Structures
Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)
Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps
Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)
Day 35: Practice Day
- Solve problems on trees, heaps, and graphs
### Week 6: Advanced Algorithms
Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)
Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms
Day 40-41: Graph Algorithms
- Dijkstraโs algorithm for shortest path
- Kruskalโs and Primโs algorithms for minimum spanning tree
Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms
### Week 7: Problem Solving and Optimization
Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems
Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef
Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization
Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them
### Week 8: Final Stretch and Project
Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts
Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project
Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems
Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report
Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)
Best DSA RESOURCES: https://topmate.io/coding/886874
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
### Week 1: Introduction to Python
Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions
Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules
Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode
### Week 2: Advanced Python Concepts
Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions
Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files
Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation
Day 14: Practice Day
- Solve intermediate problems on coding platforms
### Week 3: Introduction to Data Structures
Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists
Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues
Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions
Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues
### Week 4: Fundamental Algorithms
Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort
Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis
Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques
Day 28: Practice Day
- Solve problems on sorting, searching, and hashing
### Week 5: Advanced Data Structures
Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)
Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps
Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)
Day 35: Practice Day
- Solve problems on trees, heaps, and graphs
### Week 6: Advanced Algorithms
Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)
Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms
Day 40-41: Graph Algorithms
- Dijkstraโs algorithm for shortest path
- Kruskalโs and Primโs algorithms for minimum spanning tree
Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms
### Week 7: Problem Solving and Optimization
Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems
Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef
Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization
Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them
### Week 8: Final Stretch and Project
Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts
Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project
Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems
Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report
Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)
Best DSA RESOURCES: https://topmate.io/coding/886874
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
โค9๐1
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.
1. Python Basics
- Variables:
- Data Types:
- Integers:
- Control Structures:
-
- Loops:
- While loop:
2. Importing Libraries
- NumPy:
- Pandas:
- Matplotlib:
- Seaborn:
3. NumPy for Numerical Data
- Creating Arrays:
- Array Operations:
- Reshaping Arrays:
- Indexing and Slicing:
4. Pandas for Data Manipulation
- Creating DataFrames:
- Reading Data:
- Basic Operations:
- Selecting Columns:
- Filtering Data:
- Handling Missing Data:
- GroupBy:
5. Data Visualization
- Matplotlib:
- Seaborn:
6. Common Data Operations
- Merging DataFrames:
- Pivot Table:
- Applying Functions:
7. Basic Statistics
- Descriptive Stats:
- Correlation:
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python ๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
1. Python Basics
- Variables:
x = 10
y = "Hello"
- Data Types:
- Integers:
x = 10
- Floats: y = 3.14
- Strings: name = "Alice"
- Lists: my_list = [1, 2, 3]
- Dictionaries: my_dict = {"key": "value"}
- Tuples: my_tuple = (1, 2, 3)
- Control Structures:
-
if, elif, else
statements- Loops:
for i in range(5):
print(i)
- While loop:
while x < 5:
print(x)
x += 1
2. Importing Libraries
- NumPy:
import numpy as np
- Pandas:
import pandas as pd
- Matplotlib:
import matplotlib.pyplot as plt
- Seaborn:
import seaborn as sns
3. NumPy for Numerical Data
- Creating Arrays:
arr = np.array([1, 2, 3, 4])
- Array Operations:
arr.sum()
arr.mean()
- Reshaping Arrays:
arr.reshape((2, 2))
- Indexing and Slicing:
arr[0:2] # First two elements
4. Pandas for Data Manipulation
- Creating DataFrames:
df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['A', 'B', 'C']
})
- Reading Data:
df = pd.read_csv('file.csv')
- Basic Operations:
df.head() # First 5 rows
df.describe() # Summary statistics
df.info() # DataFrame info
- Selecting Columns:
df['col1']
df[['col1', 'col2']]
- Filtering Data:
df[df['col1'] > 2]
- Handling Missing Data:
df.dropna() # Drop missing values
df.fillna(0) # Replace missing values
- GroupBy:
df.groupby('col2').mean()
5. Data Visualization
- Matplotlib:
plt.plot(df['col1'], df['col2'])
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Title')
plt.show()
- Seaborn:
sns.histplot(df['col1'])
sns.boxplot(x='col1', y='col2', data=df)
6. Common Data Operations
- Merging DataFrames:
pd.merge(df1, df2, on='key')
- Pivot Table:
df.pivot_table(index='col1', columns='col2', values='col3')
- Applying Functions:
df['col1'].apply(lambda x: x*2)
7. Basic Statistics
- Descriptive Stats:
df['col1'].mean()
df['col1'].median()
df['col1'].std()
- Correlation:
df.corr()
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python ๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
โค6
๐ฅ ๐ฆ๐ธ๐ถ๐น๐น ๐จ๐ฝ ๐๐ฒ๐ณ๐ผ๐ฟ๐ฒ ๐ฎ๐ฌ๐ฎ๐ฑ ๐๐ป๐ฑ๐!
๐ 100% FREE Online Courses in
โ๏ธ AI
โ๏ธ Data Science
โ๏ธ Cloud Computing
โ๏ธ Cyber Security
โ๏ธ Python
๐๐ป๐ฟ๐ผ๐น๐น ๐ถ๐ป ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐๐:-
https://linkpd.in/freeskills
Get Certified & Stay Ahead๐
๐ 100% FREE Online Courses in
โ๏ธ AI
โ๏ธ Data Science
โ๏ธ Cloud Computing
โ๏ธ Cyber Security
โ๏ธ Python
๐๐ป๐ฟ๐ผ๐น๐น ๐ถ๐ป ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐๐:-
https://linkpd.in/freeskills
Get Certified & Stay Ahead๐
โค3
15 Coding Project Ideas ๐
Beginner Level:
1. ๐๏ธ File Organizer Script
2. ๐งพ Expense Tracker (CLI or GUI)
3. ๐ Password Generator
4. ๐ Simple Calendar App
5. ๐น๏ธ Number Guessing Game
Intermediate Level:
6. ๐ฐ News Aggregator using API
7. ๐ง Email Sender App
8. ๐ณ๏ธ Polling/Voting System
9. ๐งโ๐ Student Management System
10. ๐ท๏ธ URL Shortener
Advanced Level:
11. ๐ฃ๏ธ Real-Time Chat App (with backend)
12. ๐ฆ Inventory Management System
13. ๐ฆ Budgeting App with Charts
14. ๐ฅ Appointment Booking System
15. ๐ง AI-powered Text Summarizer
Credits: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
React โค๏ธ for more
Beginner Level:
1. ๐๏ธ File Organizer Script
2. ๐งพ Expense Tracker (CLI or GUI)
3. ๐ Password Generator
4. ๐ Simple Calendar App
5. ๐น๏ธ Number Guessing Game
Intermediate Level:
6. ๐ฐ News Aggregator using API
7. ๐ง Email Sender App
8. ๐ณ๏ธ Polling/Voting System
9. ๐งโ๐ Student Management System
10. ๐ท๏ธ URL Shortener
Advanced Level:
11. ๐ฃ๏ธ Real-Time Chat App (with backend)
12. ๐ฆ Inventory Management System
13. ๐ฆ Budgeting App with Charts
14. ๐ฅ Appointment Booking System
15. ๐ง AI-powered Text Summarizer
Credits: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
React โค๏ธ for more
โค4
When to Use Which Programming Language?
C โ OS Development, Embedded Systems, Game Engines
C++ โ Game Dev, High-Performance Apps, Finance
Java โ Enterprise Apps, Android, Backend
C# โ Unity Games, Windows Apps
Python โ AI/ML, Data, Automation, Web Dev
JavaScript โ Frontend, Full-Stack, Web Games
Golang โ Cloud Services, APIs, Networking
Swift โ iOS/macOS Apps
Kotlin โ Android, Backend
PHP โ Web Dev (WordPress, Laravel)
Ruby โ Web Dev (Rails), Prototypes
Rust โ System Apps, Blockchain, HPC
Lua โ Game Scripting (Roblox, WoW)
R โ Stats, Data Science, Bioinformatics
SQL โ Data Analysis, DB Management
TypeScript โ Scalable Web Apps
Node.js โ Backend, Real-Time Apps
React โ Modern Web UIs
Vue โ Lightweight SPAs
Django โ AI/ML Backend, Web Dev
Laravel โ Full-Stack PHP
Blazor โ Web with .NET
Spring Boot โ Microservices, Java Enterprise
Ruby on Rails โ MVPs, Startups
HTML/CSS โ UI/UX, Web Design
Git โ Version Control
Linux โ Server, Security, DevOps
DevOps โ Infra Automation, CI/CD
CI/CD โ Testing + Deployment
Docker โ Containerization
Kubernetes โ Cloud Orchestration
Microservices โ Scalable Backends
Selenium โ Web Testing
Playwright โ Modern Web Automation
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
ENJOY LEARNING ๐๐
C โ OS Development, Embedded Systems, Game Engines
C++ โ Game Dev, High-Performance Apps, Finance
Java โ Enterprise Apps, Android, Backend
C# โ Unity Games, Windows Apps
Python โ AI/ML, Data, Automation, Web Dev
JavaScript โ Frontend, Full-Stack, Web Games
Golang โ Cloud Services, APIs, Networking
Swift โ iOS/macOS Apps
Kotlin โ Android, Backend
PHP โ Web Dev (WordPress, Laravel)
Ruby โ Web Dev (Rails), Prototypes
Rust โ System Apps, Blockchain, HPC
Lua โ Game Scripting (Roblox, WoW)
R โ Stats, Data Science, Bioinformatics
SQL โ Data Analysis, DB Management
TypeScript โ Scalable Web Apps
Node.js โ Backend, Real-Time Apps
React โ Modern Web UIs
Vue โ Lightweight SPAs
Django โ AI/ML Backend, Web Dev
Laravel โ Full-Stack PHP
Blazor โ Web with .NET
Spring Boot โ Microservices, Java Enterprise
Ruby on Rails โ MVPs, Startups
HTML/CSS โ UI/UX, Web Design
Git โ Version Control
Linux โ Server, Security, DevOps
DevOps โ Infra Automation, CI/CD
CI/CD โ Testing + Deployment
Docker โ Containerization
Kubernetes โ Cloud Orchestration
Microservices โ Scalable Backends
Selenium โ Web Testing
Playwright โ Modern Web Automation
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
ENJOY LEARNING ๐๐
โค11๐1
If you want to Excel at using the most used database language in the world, learn these powerful SQL features:
โข Wildcards (%, _) โ Flexible pattern matching
โข Window Functions โ ROW_NUMBER(), RANK(), DENSE_RANK(), LEAD(), LAG()
โข Common Table Expressions (CTEs) โ WITH for better readability
โข Recursive Queries โ Handle hierarchical data
โข STRING Functions โ LEFT(), RIGHT(), LEN(), TRIM(), UPPER(), LOWER()
โข Date Functions โ DATEDIFF(), DATEADD(), FORMAT()
โข Pivot & Unpivot โ Transform row data into columns
โข Aggregate Functions โ SUM(), AVG(), COUNT(), MIN(), MAX()
โข Joins & Self Joins โ Master INNER, LEFT, RIGHT, FULL, SELF JOIN
โข Indexing โ Speed up queries with CREATE INDEX
Like it if you need a complete tutorial on all these topics! ๐โค๏ธ
#sql
โข Wildcards (%, _) โ Flexible pattern matching
โข Window Functions โ ROW_NUMBER(), RANK(), DENSE_RANK(), LEAD(), LAG()
โข Common Table Expressions (CTEs) โ WITH for better readability
โข Recursive Queries โ Handle hierarchical data
โข STRING Functions โ LEFT(), RIGHT(), LEN(), TRIM(), UPPER(), LOWER()
โข Date Functions โ DATEDIFF(), DATEADD(), FORMAT()
โข Pivot & Unpivot โ Transform row data into columns
โข Aggregate Functions โ SUM(), AVG(), COUNT(), MIN(), MAX()
โข Joins & Self Joins โ Master INNER, LEFT, RIGHT, FULL, SELF JOIN
โข Indexing โ Speed up queries with CREATE INDEX
Like it if you need a complete tutorial on all these topics! ๐โค๏ธ
#sql
โค7๐1