Coding Projects
61.2K subscribers
760 photos
1 video
277 files
362 links
Channel specialized for advanced concepts and projects to master:
* Python programming
* Web development
* Java programming
* Artificial Intelligence
* Machine Learning

Managed by: @love_data
Download Telegram
If you want to Excel at Web Development and build stunning websites, master these essential skills:

Frontend:
HTML, CSS, JavaScript – Core web technologies
Flexbox & Grid – Master modern CSS layouts
Responsive Design – Make websites mobile-friendly
JavaScript ES6+ – Arrow functions, Promises, Async/Await
React, Vue, or Angular – Modern frontend frameworks
APIs & Fetch/Axios – Connect frontend with backend
State Management – Redux, Vuex, or Context API

Backend:
Node.js & Express.js – Build powerful server-side applications
Databases – MySQL, PostgreSQL, MongoDB (NoSQL)
RESTful APIs & GraphQL – Handle data efficiently
Authentication – JWT, OAuth, and session management
WebSockets – Real-time applications

DevOps & Deployment:
Version Control – Git & GitHub
CI/CD Pipelines – Automate deployments
Cloud Hosting – AWS, Firebase, Vercel, Netlify
Docker & Kubernetes – Scalable applications

Like it if you need a complete tutorial on all these topics! 👍❤️
Data Scientist Roadmap
|
|-- 1. Basic Foundations
|   |-- a. Mathematics
|   |   |-- i. Linear Algebra
|   |   |-- ii. Calculus
|   |   |-- iii. Probability
|   |   -- iv. Statistics
|   |
|   |-- b. Programming
|   |   |-- i. Python
|   |   |   |-- 1. Syntax and Basic Concepts
|   |   |   |-- 2. Data Structures
|   |   |   |-- 3. Control Structures
|   |   |   |-- 4. Functions
|   |   |  
-- 5. Object-Oriented Programming
|   |   |
|   |   -- ii. R (optional, based on preference)
|   |
|   |-- c. Data Manipulation
|   |   |-- i. Numpy (Python)
|   |   |-- ii. Pandas (Python)
|   |  
-- iii. Dplyr (R)
|   |
|   -- d. Data Visualization
|       |-- i. Matplotlib (Python)
|       |-- ii. Seaborn (Python)
|      
-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
|   |-- a. Exploratory Data Analysis (EDA)
|   |-- b. Feature Engineering
|   |-- c. Data Cleaning
|   |-- d. Handling Missing Data
|   -- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
|   |-- a. Supervised Learning
|   |   |-- i. Regression
|   |   |   |-- 1. Linear Regression
|   |   |  
-- 2. Polynomial Regression
|   |   |
|   |   -- ii. Classification
|   |       |-- 1. Logistic Regression
|   |       |-- 2. k-Nearest Neighbors
|   |       |-- 3. Support Vector Machines
|   |       |-- 4. Decision Trees
|   |      
-- 5. Random Forest
|   |
|   |-- b. Unsupervised Learning
|   |   |-- i. Clustering
|   |   |   |-- 1. K-means
|   |   |   |-- 2. DBSCAN
|   |   |   -- 3. Hierarchical Clustering
|   |   |
|   |  
-- ii. Dimensionality Reduction
|   |       |-- 1. Principal Component Analysis (PCA)
|   |       |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
|   |       -- 3. Linear Discriminant Analysis (LDA)
|   |
|   |-- c. Reinforcement Learning
|   |-- d. Model Evaluation and Validation
|   |   |-- i. Cross-validation
|   |   |-- ii. Hyperparameter Tuning
|   |  
-- iii. Model Selection
|   |
|   -- e. ML Libraries and Frameworks
|       |-- i. Scikit-learn (Python)
|       |-- ii. TensorFlow (Python)
|       |-- iii. Keras (Python)
|      
-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
|   |-- a. Neural Networks
|   |   |-- i. Perceptron
|   |   -- ii. Multi-Layer Perceptron
|   |
|   |-- b. Convolutional Neural Networks (CNNs)
|   |   |-- i. Image Classification
|   |   |-- ii. Object Detection
|   |  
-- iii. Image Segmentation
|   |
|   |-- c. Recurrent Neural Networks (RNNs)
|   |   |-- i. Sequence-to-Sequence Models
|   |   |-- ii. Text Classification
|   |   -- iii. Sentiment Analysis
|   |
|   |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
|   |   |-- i. Time Series Forecasting
|   |  
-- ii. Language Modeling
|   |
|   -- e. Generative Adversarial Networks (GANs)
|       |-- i. Image Synthesis
|       |-- ii. Style Transfer
|      
-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
|   |-- a. Hadoop
|   |   |-- i. HDFS
|   |   -- ii. MapReduce
|   |
|   |-- b. Spark
|   |   |-- i. RDDs
|   |   |-- ii. DataFrames
|   |  
-- iii. MLlib
|   |
|   -- c. NoSQL Databases
|       |-- i. MongoDB
|       |-- ii. Cassandra
|       |-- iii. HBase
|      
-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
|   |-- a. Dashboarding Tools
|   |   |-- i. Tableau
|   |   |-- ii. Power BI
|   |   |-- iii. Dash (Python)
|   |   -- iv. Shiny (R)
|   |
|   |-- b. Storytelling with Data
|  
-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
|   |-- a. Industry-specific Knowledge
|   |-- b. Problem-solving
|   |-- c. Communication Skills
|   |-- d. Time Management
|   -- e. Teamwork
|
-- 8. Staying Updated and Continuous Learning
    |-- a. Online Courses
    |-- b. Books and Research Papers
    |-- c. Blogs and Podcasts
    |-- d. Conferences and Workshops
    `-- e. Networking and Community Engagement
3
🚀 Roadmap to Become a Software Architect 👨‍💻

📂 Programming & Development Fundamentals
 ∟📂 Master One or More Programming Languages (Java, C#, Python, etc.)
  ∟📂 Learn Data Structures & Algorithms
   ∟📂 Understand Design Patterns & Best Practices

📂 Software Design & Architecture Principles
 ∟📂 Learn SOLID Principles & Clean Code Practices
  ∟📂 Master Object-Oriented & Functional Design
   ∟📂 Understand Domain-Driven Design (DDD)

📂 System Design & Scalability
 ∟📂 Learn Microservices & Monolithic Architectures
  ∟📂 Understand Load Balancing, Caching & CDNs
   ∟📂 Dive into CAP Theorem & Event-Driven Architecture

📂 Databases & Storage Solutions
 ∟📂 Master SQL & NoSQL Databases
  ∟📂 Learn Database Scaling & Sharding Strategies
   ∟📂 Understand Data Warehousing & ETL Processes

📂 Cloud Computing & DevOps
 ∟📂 Learn Cloud Platforms (AWS, Azure, GCP)
  ∟📂 Understand CI/CD & Infrastructure as Code (IaC)
   ∟📂 Work with Containers & Kubernetes

📂 Security & Performance Optimization
 ∟📂 Master Secure Coding Practices
  ∟📂 Learn Authentication & Authorization (OAuth, JWT)
   ∟📂 Optimize System Performance & Reliability

📂 Project Management & Communication
 ∟📂 Work with Agile & Scrum Methodologies
  ∟📂 Collaborate with Cross-Functional Teams
   ∟📂 Improve Technical Documentation & Decision-Making

📂 Real-World Experience & Leadership
 ∟📂 Design & Build Scalable Software Systems
  ∟📂 Contribute to Open-Source & Architectural Discussions
   ∟📂 Mentor Developers & Lead Engineering Teams

📂 Interview Preparation & Career Growth
 ∟📂 Solve System Design Challenges
  ∟📂 Master Architectural Case Studies
   ∟📂 Network & Apply for Software Architect Roles

Get Hired as a Software Architect

React "❤️" for More 👨‍💻
6
Is DSA important for interviews?

Yes, DSA (Data Structures and Algorithms) is very important for interviews, especially for software engineering roles.

I often get asked, What do I need to start learning DSA?

Here's the roadmap for getting started with Data Structures and Algorithms (DSA):

𝗣𝗵𝗮𝘀𝗲 𝟭: 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
1. Introduction to DSA
- Understand what DSA is and why it's important.
- Overview of complexity analysis (Big O notation).

2. Complexity Analysis
- Time Complexity
- Space Complexity

3. Basic Data Structures
- Arrays
- Linked Lists
- Stacks
- Queues

4. Basic Algorithms
- Sorting (Bubble Sort, Selection Sort, Insertion Sort)
- Searching (Linear Search, Binary Search)

5. OOP (Object-Oriented Programming)

𝗣𝗵𝗮𝘀𝗲 𝟮: 𝗜𝗻𝘁𝗲𝗿𝗺𝗲𝗱𝗶𝗮𝘁𝗲 𝗖𝗼𝗻𝗰𝗲𝗽𝘁𝘀
1. Two Pointers Technique
- Introduction and basic usage
- Problems: Pair Sum, Triplets, Sorted Array Intersection etc..

2. Sliding Window Technique
- Introduction and basic usage
- Problems: Maximum Sum Subarray, Longest Substring with K Distinct Characters, Minimum Window Substring etc..

3. Line Sweep Algorithms
- Introduction and basic usage
- Problems: Meeting Rooms II, Skyline Problem

4. Recursion

5. Backtracking

6. Sorting Algorithms
- Merge Sort
- Quick Sort

7. Data Structures
- Hash Tables
- Trees (Binary Trees, Binary Search Trees)
- Heaps

𝗣𝗵𝗮𝘀𝗲 𝟯: 𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱 𝗖𝗼𝗻𝗰𝗲𝗽𝘁𝘀
1. Graph Algorithms
- Graph Representation (Adjacency List, Adjacency Matrix)
- BFS (Breadth-First Search)
- DFS (Depth-First Search)
- Shortest Path Algorithms (Dijkstra's, Bellman-Ford)
- Minimum Spanning Tree (Kruskal's, Prim's)

2. Dynamic Programming
- Basic Problems (Fibonacci, Knapsack etc..)
- Advanced Problems (Longest Increasing Subsea mice, Matrix Chain Subsequence, Multiplication etc..)

3. Advanced Trees
- AVL Trees
- Red-Black Trees
- Segment Trees
- Trie

𝗣𝗵𝗮𝘀𝗲 𝟰: 𝗣𝗿𝗮𝗰𝘁𝗶𝗰𝗲 𝗮𝗻𝗱 𝗔𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻
1. Competitive Programming Platforms: LeetCode, Codeforces, HackerRank, CodeChef Solve problems daily

2. Mock Interviews
- Participate in mock interviews to simulate real interview scenarios.
- DSA interviews assess your ability to break down complex problems into smaller steps.

Best DSA RESOURCES: https://topmate.io/coding/886874

All the best 👍👍
3
15 Best Project Ideas for Data Science : 📊

🚀 Beginner Level:

1. Exploratory Data Analysis (EDA) on Titanic Dataset
2. Netflix Movies/TV Shows Data Analysis
3. COVID-19 Data Visualization Dashboard
4. Sales Data Analysis (CSV/Excel)
5. Student Performance Analysis

🌟 Intermediate Level:
6. Sentiment Analysis on Tweets
7. Customer Segmentation using K-Means
8. Credit Score Classification
9. House Price Prediction
10. Market Basket Analysis (Apriori Algorithm)

🌌 Advanced Level:
11. Time Series Forecasting (Stock/Weather Data)
12. Fake News Detection using NLP
13. Image Classification with CNN
14. Resume Parser using NLP
15. Customer Churn Prediction

Credits: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
3
Evolution of Programming Languages🖥️


🔰Programming Languages🔰

1. JAVA:
More than 85% android apps are created using JAVA. It is also used in big (big means big) websites. It is a portable programming language which makes it easy to use on multi platforms.
2. Java Script:
Its a browser/client side language. It makes the webpage more interactive. Like for example when you enter a comment on Facebook then the whole page doesn’t load., just that comment is added. This kind of functionalities are added into webpages with JavaScript. Javascript brought about a revolution in webapps.
3. Assembly Language:
The most low level programming language because its nothing more than machine code written in human readable form. Its hard to write and you need to have deep understanding of computers to use this because you are really talking with it. Its very fast in terms of execution.
4. C:
Its a low level language too that’s why its fast. It is used to program operating system, computer games and software which need to be fast. It is hard to write but gives you more control of your computer.
5. C++ :
Its C with more features and those features make it more complex.
6. Perl:
A language which was developed to create small scripts easily . Programming in Perl is easy and efficient but the programs are comparatively slower.
7. Python:
Perl was made better and named Python. Its easy, efficient and flexible. You can automate things with python in a go.
8. Ruby:
Its similar to Python but it became popular when they created a web application development framework named Rails which lets developers to write their web application conveniently.
9. HTML and CSS:
HTML and CSS are languages not programming languages because they are just used display things on a website. They do not do any actual processing. HTML is used to create the basic structure of the website and then CSS is used to make it look good.
10. PHP:
It is used to process things in a website. It is server-sided language as it doesn’t get executed in user browser, but on the server. It can be used to generate dynamic webpage content.
11. SQL:
This is not exactly a programming language. It is used to interact with databases.

➡️ This list could be long because there are too many programming language but I introduced you to the popular ones.

Which Language Should Be Your First Programming Language?

Suggestions..

1. Getting Started
Learn HTML & CSS. They are easy and will give you a basic idea of how programming works. You will be able to create your own webpages. After HTML you can go with PHP and SQL, so will have a good grasp over web designing and then you can go with python, C or Java. I assure you that PHP, HTML and SQL will be definitely useful in your hacking journey.

2. Understanding Computer And Programming Better
C..The classic C! C is one of the most foundational languages. If you learn C, you will have a deep knowledge of Computers and you will have a greater understanding of programming too, that will make you a better programmer. You will spend most of your time compiling though (just trying to crack a joke).

3. Too Eager To Create Programs?
Python! Python is very easy to learn and you can create a program which does something instead of programming calculators. Well Python doesn’t start you from the basics but with if you know python, you will be able to understand other languages better. One benefit of python is that you don’t need to compile the script to run it, just write one and run it.

Join for more: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
1
Project ideas for college students
5
📊 Data Science Project Ideas to Practice & Master Your Skills

🟢 Beginner Level
• Titanic Survival Prediction (Logistic Regression)
• House Price Prediction (Linear Regression)
• Exploratory Data Analysis on IPL or Netflix Dataset
• Customer Segmentation (K-Means Clustering)
• Weather Data Visualization

🟡 Intermediate Level
• Sentiment Analysis on Tweets
• Credit Card Fraud Detection
• Time Series Forecasting (Stock or Sales Data)
• Image Classification using CNN (Fashion MNIST)
• Recommendation System for Movies/Products

🔴 Advanced Level
• End-to-End Machine Learning Pipeline with Deployment
• NLP Chatbot using Transformers
• Real-Time Dashboard with Streamlit + ML
• Anomaly Detection in Network Traffic
• A/B Testing & Business Decision Modeling

💬 Double Tap ❤️ for more! 🤖📈
2
Let's explore some of the best open source projects by language.

1⃣ Best Python Open Source Projects

🚣‍♂ TensorFlow
🚣‍♂ Matplotlib
🚣‍♂ Flask
🚣‍♂ Django
🚣‍♂ PyTorch

2⃣ Best JavaScript Open Source Projects

🚣‍♂ React
🚣‍♂ Node.JS
🚣‍♂ jQuery

3⃣ Best C++ Open Source Projects

🚣‍♂ Serenity
🚣‍♂ MongoDB
🚣‍♂ SonarSource
🚣‍♂ OBS Studio
🚣‍♂ Electron

4⃣ Best Java Open Source Projects

🚣‍♂ Mockito
🚣‍♂ Realm
🚣‍♂ Jenkins
🚣‍♂ Guava
🚣‍♂ Moshi


It's time to start developing your own open source projects. Explore the projects
2
🔥 Top SQL Projects for Data Analytics 🚀

If you're preparing for a Data Analyst role or looking to level up your SQL skills, working on real-world projects is the best way to learn!

Here are some must-do SQL projects to strengthen your portfolio. 👇

🟢 Beginner-Friendly SQL Projects (Great for Learning Basics)

Employee Database Management – Build and query HR data 📊
Library Book Tracking – Create a database for book loans and returns
Student Grading System – Analyze student performance data
Retail Point-of-Sale System – Work with sales and transactions 💰
Hotel Booking System – Manage customer bookings and check-ins 🏨

🟡 Intermediate SQL Projects (For Stronger Querying & Analysis)

E-commerce Order Management – Analyze order trends & customer data 🛒
Sales Performance Analysis – Work with revenue, profit margins & KPIs 📈
Inventory Control System – Optimize stock tracking 📦
Real Estate Listings – Manage and analyze property data 🏡
Movie Rating System – Analyze user reviews & trends 🎬

🔵 Advanced SQL Projects (For Business-Level Analytics)

🔹 Social Media Analytics – Track user engagement & content trends
🔹 Insurance Claim Management – Fraud detection & risk assessment
🔹 Customer Feedback Analysis – Perform sentiment analysis on reviews
🔹 Freelance Job Platform – Match freelancers with project opportunities
🔹 Pharmacy Inventory System – Optimize stock levels & prescriptions

🔴 Expert-Level SQL Projects (For Data-Driven Decision Making)

🔥 Music Streaming Analysis – Study user behavior & song trends 🎶
🔥 Healthcare Prescription Tracking – Identify patterns in medicine usage
🔥 Employee Shift Scheduling – Optimize workforce efficiency
🔥 Warehouse Stock Control – Manage supply chain data efficiently
🔥 Online Auction System – Analyze bidding patterns & sales performance 🛍️

🔗 Pro Tip: If you're applying for Data Analyst roles, pick 3-4 projects, clean the data, and create interactive dashboards using Power BI/Tableau to showcase insights!

React with ♥️ if you want detailed explanation of each project

Share with credits: 👇 https://t.iss.one/sqlspecialist

Hope it helps :)
7
🌮 Data Analyst Vs Data Engineer Vs Data Scientist 🌮


Skills required to become data analyst
👉 Advanced Excel, Oracle/SQL
👉 Python/R

Skills required to become data engineer
👉 Python/ Java.
👉 SQL, NoSQL technologies like Cassandra or MongoDB
👉 Big data technologies like Hadoop, Hive/ Pig/ Spark

Skills required to become data Scientist
👉 In-depth knowledge of tools like R/ Python/ SAS.
👉 Well versed in various machine learning algorithms like scikit-learn, karas and tensorflow
👉 SQL and NoSQL

Bonus skill required: Data Visualization (PowerBI/ Tableau) & Statistics
2👏1
🖥 VS Code Themes You Should Try
4