Very cool cookbook here
PDF extractor, calendar agent, data analyst, financial agent & more
docs: https://docs.cohere.com/docs/multi-step-tool-use
cookbook: https://github.com/cohere-ai/notebooks/tree/main?tab=readme-ov-file#agents
✅ @Machine_learn
PDF extractor, calendar agent, data analyst, financial agent & more
docs: https://docs.cohere.com/docs/multi-step-tool-use
cookbook: https://github.com/cohere-ai/notebooks/tree/main?tab=readme-ov-file#agents
Please open Telegram to view this post
VIEW IN TELEGRAM
Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing
🖥 Github: https://github.com/wangkai930418/DPL
📕 Paper: https://arxiv.org/abs/2405.01496v1
🔥Dataset: https://neurips.cc/virtual/2023/poster/72801
@Machine_learn
🔥Dataset: https://neurips.cc/virtual/2023/poster/72801
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Recurrent Neural Networks Learn to Store and Generate Sequences
using Non-Linear Representations
#RNN
https://arxiv.org/pdf/2408.10920
@Machine_learn
using Non-Linear Representations
#RNN
https://arxiv.org/pdf/2408.10920
@Machine_learn
👍2
MER 2024: Semi-Supervised Learning, Noise Robustness, and Open-Vocabulary Multimodal Emotion Recognition
🖥 Github: https://github.com/zeroqiaoba/mertools
📕 Paper: https://arxiv.org/abs/2404.17113v1
🔥Dataset: https://paperswithcode.com/dataset/voxceleb2
@Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/voxceleb2
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - zeroQiaoba/MERTools: Toolkits for Multimodal Emotion Recognition
Toolkits for Multimodal Emotion Recognition. Contribute to zeroQiaoba/MERTools development by creating an account on GitHub.
📃A key review on graph data science: The power of graphs in scientific studies
📎 Study paper
@Machine_learn
📎 Study paper
@Machine_learn
👍1
Paper: Scalable Autoregressive Image Generation with Mamba
Paper: https://arxiv.org/pdf/2408.12245v1.pdf
Code: https://github.com/hp-l33/aim
Dataset: ImageNet
@Machine_learn
Paper: https://arxiv.org/pdf/2408.12245v1.pdf
Code: https://github.com/hp-l33/aim
Dataset: ImageNet
@Machine_learn
👍2
🎓 Graph Neural Networks in Intrusion Detection
📘A thesis submitted in fulfilment of the requirements for the degree of MSc. Computer Science
🗓Publish year: 2024
📎Study Thesis
@Machine_learn
📘A thesis submitted in fulfilment of the requirements for the degree of MSc. Computer Science
🗓Publish year: 2024
📎Study Thesis
@Machine_learn
👍4
DocsGPT
DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in project documentation. With its integration of the powerful GPT models, developers can easily ask questions about a project and receive accurate answers.
Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
Creator: Arc53
Stars ⭐️: 7.4k
Forked By: 769
https://github.com/arc53/DocsGPT
#DocsGPT #GPT
@Machine_learn
DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in project documentation. With its integration of the powerful GPT models, developers can easily ask questions about a project and receive accurate answers.
Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
Creator: Arc53
Stars ⭐️: 7.4k
Forked By: 769
https://github.com/arc53/DocsGPT
#DocsGPT #GPT
@Machine_learn
GitHub
GitHub - arc53/DocsGPT: DocsGPT is an open-source genAI tool that helps users get reliable answers from knowledge source, while…
DocsGPT is an open-source genAI tool that helps users get reliable answers from knowledge source, while avoiding hallucinations. It enables private and reliable information retrieval, with tooling ...
👍1
An open source UI to train your own Flux LoRA just landed on Hugging Face 🚀 Also, probably the easiest and cheapest (local training also supported).
https://huggingface.co/spaces/autotrain-projects/train-flux-lora-ease
@Machine_learn
https://huggingface.co/spaces/autotrain-projects/train-flux-lora-ease
@Machine_learn
Forwarded from Papers
با عرض سلام مقاله اي تحت ريوايزد داريم که در حوزه Ultrasound Image Segmentation هستش. دوستانی که نیاز دارن نفر سومش رو می تونیم اختصاص بدیم.
@Raminmousa
@Paper4money
@Machine_learn
@Raminmousa
@Paper4money
@Machine_learn
# Clone repository
git clone https://github.com/01-ai/Yi-Coder.git
cd Yi-Coder
# Install requirements
pip install -r requirements.txt
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2
Book of machine learning algorithms & concepts explained to simply, even a human can understand.
📓 Book
✅ @Machine_learn
📓 Book
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3
Conformal prediction under ambiguous ground truth
Paper: https://arxiv.org/pdf/2307.09302v2.pdf
Codes:
https://github.com/google-deepmind/uncertain_ground_truth
https://github.com/alaalab/webcp
Dataset: Dermatology ddx dataset
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2307.09302v2.pdf
Codes:
https://github.com/google-deepmind/uncertain_ground_truth
https://github.com/alaalab/webcp
Dataset: Dermatology ddx dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Forwarded from Papers
با عرض سلام
در ادامه فرایند نگارش مقالات سعی داریم چند گروه ۴ نفره برای مقالات با موضوعات مختلف ایجاد کنیم. چهار موضوع که می خواهیم در ان ها کار کنیم از قبیل زیر می باشند:
۱ - طبقه بندی تصاویر پزشکی
۲- پیش بینی ترافیک شبکه
۳- حل مشکلات شبکه های RNN در مساله سری زمانی
۴-پیش بینی بار مصرفی در شبکه های smart grid
جهت اطلاعات بیشتر کسانی که دوست دارند می تونن به بنده پیام
بدن.
✅ @Raminmousa
@Paper4money
@machine_learn
در ادامه فرایند نگارش مقالات سعی داریم چند گروه ۴ نفره برای مقالات با موضوعات مختلف ایجاد کنیم. چهار موضوع که می خواهیم در ان ها کار کنیم از قبیل زیر می باشند:
۱ - طبقه بندی تصاویر پزشکی
۲- پیش بینی ترافیک شبکه
۳- حل مشکلات شبکه های RNN در مساله سری زمانی
۴-پیش بینی بار مصرفی در شبکه های smart grid
جهت اطلاعات بیشتر کسانی که دوست دارند می تونن به بنده پیام
بدن.
@Paper4money
@machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine learning books and papers pinned «با عرض سلام در ادامه فرایند نگارش مقالات سعی داریم چند گروه ۴ نفره برای مقالات با موضوعات مختلف ایجاد کنیم. چهار موضوع که می خواهیم در ان ها کار کنیم از قبیل زیر می باشند: ۱ - طبقه بندی تصاویر پزشکی ۲- پیش بینی ترافیک شبکه ۳- حل مشکلات شبکه های RNN در مساله…»