This media is not supported in your browser
VIEW IN TELEGRAM
π₯ TokenCompose, a text-to-image latent diffusion model trained with fine-grained grounding objectives
π₯ Code: https://github.com/mlpc-ucsd/TokenCompose
π Website: https://mlpc-ucsd.github.io/TokenCompose/
π Paper: https://huggingface.co/papers/2312.03626
@Machine_learn
π₯ Code: https://github.com/mlpc-ucsd/TokenCompose
π Website: https://mlpc-ucsd.github.io/TokenCompose/
π Paper: https://huggingface.co/papers/2312.03626
@Machine_learn
π4
Exploring the potential of channel interactions for image restoration
π₯ Github: https://github.com/c-yn/ChaIR
π Paper: https://www.sciencedirect.com/science/article/abs/pii/S0950705123009061
π₯ Dataset: https://paperswithcode.com/dataset/reside
β¨ Tasks: https://paperswithcode.com/task/deblurring
@Machine_learn
π₯ Github: https://github.com/c-yn/ChaIR
π Paper: https://www.sciencedirect.com/science/article/abs/pii/S0950705123009061
π₯ Dataset: https://paperswithcode.com/dataset/reside
β¨ Tasks: https://paperswithcode.com/task/deblurring
@Machine_learn
π₯ Self-conditioned Image Generation via Generating Representations
A new benchmark in class-unconditional image generation.
π₯ Github: https://github.com/LTH14/rcg
π Paper: https://arxiv.org/abs/2312.03701
π Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
A new benchmark in class-unconditional image generation.
π₯ Github: https://github.com/LTH14/rcg
π Paper: https://arxiv.org/abs/2312.03701
π Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
π1
Repaint123: Fast and High-quality One Image to 3D Generation with Progressive Controllable 2D Repainting
π₯ Github: https://github.com/junwuzhang19/repaint123
π Paper: https://arxiv.org/pdf/2312.13271v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π₯ Github: https://github.com/junwuzhang19/repaint123
π Paper: https://arxiv.org/pdf/2312.13271v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π2
An Empirical Study on Compliance with Ranking Transparency in the Software Documentation of EU Online Platforms
π₯ Github: https://github.com/francesco-sovrano/automating-regulatory-compliance-an-empirical-study-on-ranking-transparency-of-eu-online-platforms
π Paper: https://arxiv.org/pdf/2312.14794v1.pdf
β¨ Tasks: https://paperswithcode.com/task/information-retrieval
@Machine_learn
π₯ Github: https://github.com/francesco-sovrano/automating-regulatory-compliance-an-empirical-study-on-ranking-transparency-of-eu-online-platforms
π Paper: https://arxiv.org/pdf/2312.14794v1.pdf
β¨ Tasks: https://paperswithcode.com/task/information-retrieval
@Machine_learn
π2
This media is not supported in your browser
VIEW IN TELEGRAM
β‘οΈ LLM360 - framework for open-source LLMs to foster transparency, trust, and collaborative research
π₯ Code: https://short.llm360.ai/amber-code
β‘οΈ Model: https://short.llm360.ai/amber-model
πMetrics: https://short.llm360.ai/amber-metrics
πData: https://short.llm360.ai/amber-data
@Machine_learn
π₯ Code: https://short.llm360.ai/amber-code
β‘οΈ Model: https://short.llm360.ai/amber-model
πMetrics: https://short.llm360.ai/amber-metrics
πData: https://short.llm360.ai/amber-data
@Machine_learn
π2
πViStripformer (Video-Stripformer)
π₯ Github: https://github.com/pp00704831/ViStripformer
π Paper: https://arxiv.org/pdf/2312.14502v1.pdf
β¨ Tasks: https://paperswithcode.com/task/deblurring
π₯Datasets: https://paperswithcode.com/dataset/gopro
@Machine_learn
π₯ Github: https://github.com/pp00704831/ViStripformer
π Paper: https://arxiv.org/pdf/2312.14502v1.pdf
β¨ Tasks: https://paperswithcode.com/task/deblurring
π₯Datasets: https://paperswithcode.com/dataset/gopro
@Machine_learn
LaneSegNet: Map Learning with Lane Segment Perception for Autonomous Driving
π₯ Github: https://github.com/OpenDriveLab/LaneSegNet
π Paper: https://arxiv.org/abs/2312.16108v1
π₯Datasets: https://paperswithcode.com/dataset/openlane-v2
@Machine_learn
π₯ Github: https://github.com/OpenDriveLab/LaneSegNet
π Paper: https://arxiv.org/abs/2312.16108v1
π₯Datasets: https://paperswithcode.com/dataset/openlane-v2
@Machine_learn
π§ EasyVolcap: Accelerating Neural Volumetric Video Research
π₯ Code: https://github.com/zju3dv/easyvolcap
πMetrics: https://short.llm360.ai/amber-metrics
π Paper: https://arxiv.org/abs/2312.06575v1
β‘οΈ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π₯ Code: https://github.com/zju3dv/easyvolcap
πMetrics: https://short.llm360.ai/amber-metrics
π Paper: https://arxiv.org/abs/2312.06575v1
β‘οΈ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π8
TEXTRON: Weakly Supervised Multilingual Text Detection through Data Programming
π₯ Github: https://github.com/IITB-LEAP-OCR/TEXTRON
π Paper: https://openaccess.thecvf.com/content/WACV2024/papers/Kudale_Textron_Weakly_Supervised_Multilingual_Text_Detection_Through_Data_Programming_WACV_2024_paper.pdf
π₯Datasets: https://paperswithcode.com/dataset/docbank
β¨ Tasks: https://paperswithcode.com/task/optical-character-recognition
@Machine_learn
π₯ Github: https://github.com/IITB-LEAP-OCR/TEXTRON
π Paper: https://openaccess.thecvf.com/content/WACV2024/papers/Kudale_Textron_Weakly_Supervised_Multilingual_Text_Detection_Through_Data_Programming_WACV_2024_paper.pdf
π₯Datasets: https://paperswithcode.com/dataset/docbank
β¨ Tasks: https://paperswithcode.com/task/optical-character-recognition
@Machine_learn
π4
TinyLlama-1.1B
π₯ Github: https://github.com/jzhang38/tinyllama
π Paper: https://arxiv.org/pdf/2401.02385v1.pdf
π₯Datasets: https://paperswithcode.com/dataset/mmlu
@Machine_learn
π₯ Github: https://github.com/jzhang38/tinyllama
π Paper: https://arxiv.org/pdf/2401.02385v1.pdf
π₯Datasets: https://paperswithcode.com/dataset/mmlu
@Machine_learn
π₯6π2
π‘ TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering
ΠΡΠΏΡΡΠ΅Π½ TextDiffuser-2 Ρ ΠΊΠΎΠ΄ΠΎΠΌ ΠΈ Π΄Π΅ΠΌΠΎ.
π Paper: https://arxiv.org/abs/2311.16465
π₯ Code: https://github.com/microsoft/unilm/tree/master/textdiffuser-2
β‘οΈ Demo: https://huggingface.co/spaces/JingyeChen22/TextDiffuser-2
@Machine_learn
ΠΡΠΏΡΡΠ΅Π½ TextDiffuser-2 Ρ ΠΊΠΎΠ΄ΠΎΠΌ ΠΈ Π΄Π΅ΠΌΠΎ.
π Paper: https://arxiv.org/abs/2311.16465
π₯ Code: https://github.com/microsoft/unilm/tree/master/textdiffuser-2
β‘οΈ Demo: https://huggingface.co/spaces/JingyeChen22/TextDiffuser-2
@Machine_learn
β€4π4
Sign Language Understanding
π₯ Github: https://github.com/FangyunWei/SLRT
π Paper: https://arxiv.org/pdf/2401.05336v1.pdf
π₯Datasets: https://paperswithcode.com/dataset/csl-daily
@Machine_learn
π₯ Github: https://github.com/FangyunWei/SLRT
π Paper: https://arxiv.org/pdf/2401.05336v1.pdf
π₯Datasets: https://paperswithcode.com/dataset/csl-daily
@Machine_learn
Fight Fraud with Machine Learning.pdf
32 MB
Book: Fight Fraud with Machine Learning
Authors: Ashish Ranjan Jha
ISBN: Null
year: 2023
pages: 288
Tags: #Machine_learning
@Machine_learn
Authors: Ashish Ranjan Jha
ISBN: Null
year: 2023
pages: 288
Tags: #Machine_learning
@Machine_learn
π11
ViQuAE
π₯ Github: https://github.com/paullerner/viquae
π Paper: https://arxiv.org/pdf/2401.05736v1.pdf
π₯Datasets: https://paperswithcode.com/dataset/imagenet
β¨ Tasks: https://paperswithcode.com/task/cross-modal-retrieval
@Machie_learn
π₯ Github: https://github.com/paullerner/viquae
π Paper: https://arxiv.org/pdf/2401.05736v1.pdf
π₯Datasets: https://paperswithcode.com/dataset/imagenet
β¨ Tasks: https://paperswithcode.com/task/cross-modal-retrieval
@Machie_learn
π4
This media is not supported in your browser
VIEW IN TELEGRAM
πΌ AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning
π₯ Github: https://github.com/guoyww/animatediff/
π» Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
π Paper: https://arxiv.org/abs/2307.04725
π Project: https://animatediff.github.io/
@Machine_learn
π₯ Github: https://github.com/guoyww/animatediff/
π» Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
π Paper: https://arxiv.org/abs/2307.04725
π Project: https://animatediff.github.io/
@Machine_learn
π₯5β€1