1901.06032.pdf
1.5 MB
A Survey of the Recent Architectures of Deep Convolutional Neural Networks #CNN #Paper #Survey @Machine_learn
2004.15004.pdf
8.4 MB
CNN EXPLAINER: Learning Convolutional Neural Networks with Interactive Visualization #CNN #book #Introduction #DL @Machine_learn
2004.02806.pdf
3.7 MB
A Survey of Convolutional Neural Networks:
Analysis, Applications, and Prospects #CNN #Paper #Survey @Machine_learn
Analysis, Applications, and Prospects #CNN #Paper #Survey @Machine_learn
s40537-021-00444-8.pdf
7.3 MB
Review of deep learning: concepts, CNN
architectures, challenges, applications, future
directions #CNN #Survey #Paper @Machine_learn
architectures, challenges, applications, future
directions #CNN #Survey #Paper @Machine_learn
با عرض سلام دوستانی که نیاز به تهیه ی پکیچ ما دارند می تونن به ایدی بنده پیام بدن @Raminmousa . همچنین دوستانی که نیاز به مشاوره در رابطه با کارهای عملی، پروپوزال و پایان نامه دارند می تونن با ایدی بنده یا شماره واتس اپ بنده 09333900804 در ارتباط باشند.
Machine learning books and papers pinned «با عرض سلام دوستانی که نیاز به تهیه ی پکیچ ما دارند می تونن به ایدی بنده پیام بدن @Raminmousa . همچنین دوستانی که نیاز به مشاوره در رابطه با کارهای عملی، پروپوزال و پایان نامه دارند می تونن با ایدی بنده یا شماره واتس اپ بنده 09333900804 در ارتباط باشند.»
rnn_tutorial.pdf
1.1 MB
Recurrent Neural Network
TINGWU WANG,
MACHINE LEARNING GROUP,
UNIVERSITY OF TORONTO #Slide #RNN @Machine_learn
TINGWU WANG,
MACHINE LEARNING GROUP,
UNIVERSITY OF TORONTO #Slide #RNN @Machine_learn
GoEmotions: A Dataset for Fine-Grained Emotion Classification
https://ai.googleblog.com/2021/10/goemotions-dataset-for-fine-grained.html
@Machine_learn
https://ai.googleblog.com/2021/10/goemotions-dataset-for-fine-grained.html
@Machine_learn
research.google
GoEmotions: A Dataset for Fine-Grained Emotion Classification
Posted by Dana Alon and Jeongwoo Ko, Software Engineers, Google Research Emotions are a key aspect of social interactions, influencing the way peop...
🔊 Torchaudio: an audio library for PyTorch
Github: https://github.com/pytorch/audio
Paper: https://arxiv.org/abs/2110.15018v1
Dataset: https://paperswithcode.com/dataset/ljspeech
@Machine_learn
Github: https://github.com/pytorch/audio
Paper: https://arxiv.org/abs/2110.15018v1
Dataset: https://paperswithcode.com/dataset/ljspeech
@Machine_learn
The fashion industry is on the verge of an unprecedented change. The implementation of machine learning, computer vision, and artificial intelligence (AI) in fashion applications is opening lots of new opportunities for this industry. This paper provides a comprehensive survey on this matter, categorizing more than 580 related articles into 22 well-defined fashion-related tasks. Such structured task-based multi-label classification of fashion research articles provides researchers with explicit research directions and facilitates their access to the related studies, improving the visibility of studies simultaneously. For each task, a time chart is provided to analyze the progress through the years. Furthermore, we provide a list of 86 public fashion datasets accompanied by a list of suggested applications and additional information for each.
link: https://arxiv.org/abs/2111.00905
@Machine_learn
link: https://arxiv.org/abs/2111.00905
@Machine_learn