gpt-engineer
gpt-engineer is a project in which you specify what you want in plain English and it iterates to produce a working codebase or scaffolded app. It’s an excellent playground for anyone exploring code-generation agents. And the repo contains clear install/usage instructions and a low-friction dev loop.
Creator: AntonOsika
Stars ⭐️: 55,000
Forked by: 7,300
Github Repo:
https://github.com/AntonOsika/gpt-engineer
@Machine_learn
gpt-engineer is a project in which you specify what you want in plain English and it iterates to produce a working codebase or scaffolded app. It’s an excellent playground for anyone exploring code-generation agents. And the repo contains clear install/usage instructions and a low-friction dev loop.
Creator: AntonOsika
Stars ⭐️: 55,000
Forked by: 7,300
Github Repo:
https://github.com/AntonOsika/gpt-engineer
@Machine_learn
GitHub
GitHub - AntonOsika/gpt-engineer: CLI platform to experiment with codegen. Precursor to: https://lovable.dev
CLI platform to experiment with codegen. Precursor to: https://lovable.dev - AntonOsika/gpt-engineer
❤2
A combined UNet++ and LSTM approach for breast ultrasound image segmentation
Author: @Raminmousa
Doi:https://kwnsfk27.r.eu-west-1.awstrack.me/L0/https:%2F%2Fdoi.org%2F10.1016%2Fj.fraope.2025.100385/1/0102019a29ac6163-f3d94222-1d67-4a4b-8bb0-22ed875a5711-000000/VLVCKG-PEYhELOu00YPCeqOuaaA=449
Link:https://www.sciencedirect.com/science/article/pii/S2773186325001732?ref=pdf_download&fr=RR-8&rr=9958aaca19dd11fc
@Machine_learn
Author: @Raminmousa
Doi:https://kwnsfk27.r.eu-west-1.awstrack.me/L0/https:%2F%2Fdoi.org%2F10.1016%2Fj.fraope.2025.100385/1/0102019a29ac6163-f3d94222-1d67-4a4b-8bb0-22ed875a5711-000000/VLVCKG-PEYhELOu00YPCeqOuaaA=449
Link:https://www.sciencedirect.com/science/article/pii/S2773186325001732?ref=pdf_download&fr=RR-8&rr=9958aaca19dd11fc
@Machine_learn
❤7
Forwarded from Papers
با عرض سلام در حال تنظیم مقاله ای تحت عنوان
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :
2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$
@Raminmousa
@Machine_learn
@Paper4money
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :
2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$
@Raminmousa
@Machine_learn
@Paper4money
💯2
Machine learning books and papers pinned «با عرض سلام در حال تنظیم مقاله ای تحت عنوان Title: MediSeg: Medical Segmentation and classification Recommender system .... Journal: IEEE Transactions on Medical Imaging If: 9.8 این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد…»
Papers
با عرض سلام در حال تنظیم مقاله ای تحت عنوان Title: MediSeg: Medical Segmentation and classification Recommender system .... Journal: IEEE Transactions on Medical Imaging If: 9.8 این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد…
با عرض سلام دوستاني كه مايل به اين پروژه هستن مي تونن بهمون ملحق بشن
@Raminmousa
@Raminmousa
با عرض سلام در حال تنظیم مقاله ای تحت عنوان
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :
2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$
@Raminmousa
@Machine_learn
@Paper4money
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :
2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$
@Raminmousa
@Machine_learn
@Paper4money
Machine learning books and papers pinned «با عرض سلام در حال تنظیم مقاله ای تحت عنوان Title: MediSeg: Medical Segmentation and classification Recommender system .... Journal: IEEE Transactions on Medical Imaging If: 9.8 این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد…»
🔹 Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.19209
• PDF: https://arxiv.org/pdf/2508.19209
• Project Page: https://omnihuman-lab.github.io/v1_5/
@Machine_learn
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.19209
• PDF: https://arxiv.org/pdf/2508.19209
• Project Page: https://omnihuman-lab.github.io/v1_5/
@Machine_learn
❤1👍1
🔹 Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.18756
• PDF: https://arxiv.org/pdf/2508.18756
• Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
@Machine_learn
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.18756
• PDF: https://arxiv.org/pdf/2508.18756
• Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
@Machine_learn
❤2
📹 AI in Bioinformatics Overcoming Pitfalls in Statistical, ML and Generative AI Approaches
🎞 Watch
@Machine_learn
🎞 Watch
@Machine_learn
YouTube
AI in Bioinformatics Overcoming Pitfalls in Statistical, ML and Generative AI Approaches
Unlock the complexities of AI in Bioinformatics in this engaging webinar, “AI in Bioinformatics: Overcoming Pitfalls in Statistical, ML and Generative AI Approaches.”
Dr. Juan Felipe Beltrán, scientist and software engineer, takes you inside the real-world…
Dr. Juan Felipe Beltrán, scientist and software engineer, takes you inside the real-world…
Forwarded from Papers
با عرض سلام برای مقاله ی زیر نفرات ۲ تا ۴ قابل اضافه شدن می باشد.
Title: Independently Recurrent Neural Network XGBoost (IXGBOOST) proposed method for Short term load forecasting
Abstract: Short-term load forecasting (STLF) is one of the most important and critical issue for power system operators. Therefore, it plays a fundamental role in improving the reliability of the power system, facilitating the integration of renewable energy sources and making demand response processes more efficient. Today, electricity forecasting based on sensor data with the increasing popularity of smart meter applications. On the other hand, STLF is one of the most critical inputs for the power plant planning undertaking. STLF reduces the overall scheduling uncertainty added by the intermittent generation of renewable resources. Therefore, it helps to minimize the cost of hydrothermal power generation in a power grid. Machine learning (ML) models have obtained acceptable results in this field. These approaches require manual feature extraction, which is challenging. Because of feature selection, deep learning approaches have automatically achieved results in prediction problems. This research proposes a network approach based on IndRNN+XGBoost to forecast electricity consumption in three modes: hourly, daily and weekly. ....
Journal: Optik
2: 20 milion
3:15 milion
4:10 milion
@Raminmousa
@Machine_learn
@paper4money
Title: Independently Recurrent Neural Network XGBoost (IXGBOOST) proposed method for Short term load forecasting
Abstract: Short-term load forecasting (STLF) is one of the most important and critical issue for power system operators. Therefore, it plays a fundamental role in improving the reliability of the power system, facilitating the integration of renewable energy sources and making demand response processes more efficient. Today, electricity forecasting based on sensor data with the increasing popularity of smart meter applications. On the other hand, STLF is one of the most critical inputs for the power plant planning undertaking. STLF reduces the overall scheduling uncertainty added by the intermittent generation of renewable resources. Therefore, it helps to minimize the cost of hydrothermal power generation in a power grid. Machine learning (ML) models have obtained acceptable results in this field. These approaches require manual feature extraction, which is challenging. Because of feature selection, deep learning approaches have automatically achieved results in prediction problems. This research proposes a network approach based on IndRNN+XGBoost to forecast electricity consumption in three modes: hourly, daily and weekly. ....
Journal: Optik
2: 20 milion
3:15 milion
4:10 milion
@Raminmousa
@Machine_learn
@paper4money
❤2
برترین کانالهای آموزشی در زمینه های هوشمصنوعی, پایتون و یادگیری ماشین و علم داده
معرفی دوره های رایگان AI, ML, LLM و DataScience
@Ai_Tv
مجله هوشمصنوعی
@Homeai
یادگیری عمیق و هوش مصنوعی
@cvision
آموزشهای تخصصی هوش مصنوعی
@class_vision
دورههای تخصصی LLM ،VLM و Agentic AI
@llm_huggingface
رویدادهای هوشمصنوعی
@eventai
آموزش Machine Learning
@Machine_learn
آموزش علوم داده
@DataPlusScience
آموزش ، اخبار و تحولات هوشمصنوعی
@Ai_NewsTv
دوره های رایگان Python , ML و Ai از موسسات معتبر
@Python4all_pro
منابع آموزشی پایتون برای علم داده ،ML & Ai :
@programmers_street
معرفی دوره های رایگان AI, ML, LLM و DataScience
@Ai_Tv
مجله هوشمصنوعی
@Homeai
یادگیری عمیق و هوش مصنوعی
@cvision
آموزشهای تخصصی هوش مصنوعی
@class_vision
دورههای تخصصی LLM ،VLM و Agentic AI
@llm_huggingface
رویدادهای هوشمصنوعی
@eventai
آموزش Machine Learning
@Machine_learn
آموزش علوم داده
@DataPlusScience
آموزش ، اخبار و تحولات هوشمصنوعی
@Ai_NewsTv
دوره های رایگان Python , ML و Ai از موسسات معتبر
@Python4all_pro
منابع آموزشی پایتون برای علم داده ،ML & Ai :
@programmers_street