Machine learning books and papers pinned «با عرض سلام مي خواهيم مقاله اي زیر را ادامه بدیم. Recurrent Neural Network Basic defiences نيازمند ٤ نفر هستيم كه بتونن در نگارش و كارها و هزينه كار كمكمون كنند. هزينه نفرات براي اين كار كه ١٨ بنچ مارك باید اجرا بشه. از قرار زير: 1: 700$(❌) 2: 500$✅…»
🔹 Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.19209
• PDF: https://arxiv.org/pdf/2508.19209
• Project Page: https://omnihuman-lab.github.io/v1_5/
@Machine_learn
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.19209
• PDF: https://arxiv.org/pdf/2508.19209
• Project Page: https://omnihuman-lab.github.io/v1_5/
@Machine_learn
Papers
با عرض سلام مي خواهيم مقاله اي زیر را ادامه بدیم. Recurrent Neural Network Basic defiences نيازمند ٤ نفر هستيم كه بتونن در نگارش و كارها و هزينه كار كمكمون كنند. هزينه نفرات براي اين كار كه ١٨ بنچ مارك باید اجرا بشه. از قرار زير: 1: 700$(❌) 2: 500$✅…
دوستانی که نیاز به این مقاله دارن جایگاه ۲، ۳، ۴ خالی می باشد...!
@Raminmousa
@Raminmousa
gpt-engineer
gpt-engineer is a project in which you specify what you want in plain English and it iterates to produce a working codebase or scaffolded app. It’s an excellent playground for anyone exploring code-generation agents. And the repo contains clear install/usage instructions and a low-friction dev loop.
Creator: AntonOsika
Stars ⭐️: 55,000
Forked by: 7,300
Github Repo:
https://github.com/AntonOsika/gpt-engineer
@Machine_learn
gpt-engineer is a project in which you specify what you want in plain English and it iterates to produce a working codebase or scaffolded app. It’s an excellent playground for anyone exploring code-generation agents. And the repo contains clear install/usage instructions and a low-friction dev loop.
Creator: AntonOsika
Stars ⭐️: 55,000
Forked by: 7,300
Github Repo:
https://github.com/AntonOsika/gpt-engineer
@Machine_learn
GitHub
GitHub - AntonOsika/gpt-engineer: CLI platform to experiment with codegen. Precursor to: https://lovable.dev
CLI platform to experiment with codegen. Precursor to: https://lovable.dev - AntonOsika/gpt-engineer
❤3
A combined UNet++ and LSTM approach for breast ultrasound image segmentation
Author: @Raminmousa
Doi:https://kwnsfk27.r.eu-west-1.awstrack.me/L0/https:%2F%2Fdoi.org%2F10.1016%2Fj.fraope.2025.100385/1/0102019a29ac6163-f3d94222-1d67-4a4b-8bb0-22ed875a5711-000000/VLVCKG-PEYhELOu00YPCeqOuaaA=449
Link:https://www.sciencedirect.com/science/article/pii/S2773186325001732?ref=pdf_download&fr=RR-8&rr=9958aaca19dd11fc
@Machine_learn
Author: @Raminmousa
Doi:https://kwnsfk27.r.eu-west-1.awstrack.me/L0/https:%2F%2Fdoi.org%2F10.1016%2Fj.fraope.2025.100385/1/0102019a29ac6163-f3d94222-1d67-4a4b-8bb0-22ed875a5711-000000/VLVCKG-PEYhELOu00YPCeqOuaaA=449
Link:https://www.sciencedirect.com/science/article/pii/S2773186325001732?ref=pdf_download&fr=RR-8&rr=9958aaca19dd11fc
@Machine_learn
❤8
Forwarded from Papers
با عرض سلام در حال تنظیم مقاله ای تحت عنوان
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :
2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$
@Raminmousa
@Machine_learn
@Paper4money
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :
2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$
@Raminmousa
@Machine_learn
@Paper4money
💯2
Machine learning books and papers pinned «با عرض سلام در حال تنظیم مقاله ای تحت عنوان Title: MediSeg: Medical Segmentation and classification Recommender system .... Journal: IEEE Transactions on Medical Imaging If: 9.8 این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد…»
Papers
با عرض سلام در حال تنظیم مقاله ای تحت عنوان Title: MediSeg: Medical Segmentation and classification Recommender system .... Journal: IEEE Transactions on Medical Imaging If: 9.8 این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد…
با عرض سلام دوستاني كه مايل به اين پروژه هستن مي تونن بهمون ملحق بشن
@Raminmousa
@Raminmousa
با عرض سلام در حال تنظیم مقاله ای تحت عنوان
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :
2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$
@Raminmousa
@Machine_learn
@Paper4money
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :
2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$
@Raminmousa
@Machine_learn
@Paper4money
Machine learning books and papers pinned «با عرض سلام در حال تنظیم مقاله ای تحت عنوان Title: MediSeg: Medical Segmentation and classification Recommender system .... Journal: IEEE Transactions on Medical Imaging If: 9.8 این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد…»
🔹 Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.19209
• PDF: https://arxiv.org/pdf/2508.19209
• Project Page: https://omnihuman-lab.github.io/v1_5/
@Machine_learn
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.19209
• PDF: https://arxiv.org/pdf/2508.19209
• Project Page: https://omnihuman-lab.github.io/v1_5/
@Machine_learn
❤2👍1
🔹 Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.18756
• PDF: https://arxiv.org/pdf/2508.18756
• Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
@Machine_learn
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.18756
• PDF: https://arxiv.org/pdf/2508.18756
• Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
@Machine_learn
❤3
📹 AI in Bioinformatics Overcoming Pitfalls in Statistical, ML and Generative AI Approaches
🎞 Watch
@Machine_learn
🎞 Watch
@Machine_learn
YouTube
AI in Bioinformatics Overcoming Pitfalls in Statistical, ML and Generative AI Approaches
Unlock the complexities of AI in Bioinformatics in this engaging webinar, “AI in Bioinformatics: Overcoming Pitfalls in Statistical, ML and Generative AI Approaches.”
Dr. Juan Felipe Beltrán, scientist and software engineer, takes you inside the real-world…
Dr. Juan Felipe Beltrán, scientist and software engineer, takes you inside the real-world…
Machine Learning Systems
Principles and Practices of Engineering Artificially Intelligent Systems
📚 Read
@Machine_learn
Principles and Practices of Engineering Artificially Intelligent Systems
📚 Read
@Machine_learn
👍2❤1
🔹 Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.18756
• PDF: https://arxiv.org/pdf/2508.18756
• Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
@Machine_learn
🔹 Publication Date: Published on Aug 26
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.18756
• PDF: https://arxiv.org/pdf/2508.18756
• Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
@Machine_learn
❤2👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Stochastic and deterministic sampling methods in diffusion models produce noticeably different trajectories, but ultimately both reach the same goal.
Diffusion Explorer allows you to visually compare different sampling methods and training objectives of diffusion models by creating visualizations like the one in the 2 videos.
Additionally, you can, for example, train a model on your own dataset and observe how it gradually converges to a sample from the correct distribution.
Check out this GitHub repository:
https://github.com/helblazer811/Diffusion-Explorer
@Machine_learn
Diffusion Explorer allows you to visually compare different sampling methods and training objectives of diffusion models by creating visualizations like the one in the 2 videos.
Additionally, you can, for example, train a model on your own dataset and observe how it gradually converges to a sample from the correct distribution.
Check out this GitHub repository:
https://github.com/helblazer811/Diffusion-Explorer
@Machine_learn
❤6