Machine learning books and papers
25.7K subscribers
1.03K photos
55 videos
929 files
1.38K links
Download Telegram
Machine learning books and papers pinned «با عرض سلام مي خواهيم مقاله اي زیر را ادامه بدیم. Recurrent Neural Network Basic defiences نيازمند ٤ نفر هستيم كه بتونن در نگارش و كارها و هزينه كار كمكمون كنند. هزينه نفرات براي اين كار كه ١٨ بنچ مارك باید اجرا بشه. از قرار زير: 1: 700$() 2: 500$»
🔹 Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

🔹 Publication Date: Published on Aug 26

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.19209
• PDF: https://arxiv.org/pdf/2508.19209
• Project Page: https://omnihuman-lab.github.io/v1_5/

@Machine_learn
gpt-engineer

gpt-engineer is a project in which you specify what you want in plain English and it iterates to produce a working codebase or scaffolded app. It’s an excellent playground for anyone exploring code-generation agents. And the repo contains clear install/usage instructions and a low-friction dev loop.

Creator:   AntonOsika
Stars ⭐️:  55,000
Forked by:  7,300

Github Repo:
https://github.com/AntonOsika/gpt-engineer

@Machine_learn
3
Forwarded from Papers
با عرض سلام در حال تنظیم مقاله ای تحت عنوان
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :

2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$

@Raminmousa
@Machine_learn
@Paper4money
💯2
Machine learning books and papers pinned «با عرض سلام در حال تنظیم مقاله ای تحت عنوان Title: MediSeg: Medical Segmentation and classification Recommender system .... Journal: IEEE Transactions on Medical Imaging If: 9.8 این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد…»
5-phase path every ML systems engineer follows but almost no one talks about.

📚 Read


@Machine_learn
The Smol Training Playbook:
The Secrets to Building World-Class LLMs


📚 Read

@Machine_learn
State of AI-assisted Software Development

📕 Report

@Machine_learn
🏆1
با عرض سلام در حال تنظیم مقاله ای تحت عنوان
Title: MediSeg: Medical Segmentation and classification Recommender system ....
Journal: IEEE Transactions on Medical Imaging
If: 9.8
این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد شبکه ها، و مسائل تولید کربن در شبکه ها ی عصبی پرداخته خواهد شد.
هزینه مشارکت :

2: 600$
3:500 $
4: 400$
5:300$
6: 200$
7:200$

@Raminmousa
@Machine_learn
@Paper4money
Machine learning books and papers pinned «با عرض سلام در حال تنظیم مقاله ای تحت عنوان Title: MediSeg: Medical Segmentation and classification Recommender system .... Journal: IEEE Transactions on Medical Imaging If: 9.8 این کار ۶ ماه طول خواهد کشید و به مسائل بهینه سازی انرژی، جلوگیری از اموزش مجدد…»
🔹 Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

🔹 Publication Date: Published on Aug 26

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.19209
• PDF: https://arxiv.org/pdf/2508.19209
• Project Page: https://omnihuman-lab.github.io/v1_5/

@Machine_learn
2👍1
🔹 Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning

🔹 Publication Date: Published on Aug 26

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.18756
• PDF: https://arxiv.org/pdf/2508.18756
• Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network

@Machine_learn
3
📑 A gentle introduction to pangenomics


📎 Study the paper


@Machine_learn
👍1
Machine Learning Systems
Principles and Practices of Engineering Artificially Intelligent Systems


📚 Read

@Machine_learn
👍21
🔹 Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning

🔹 Publication Date: Published on Aug 26

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.18756
• PDF: https://arxiv.org/pdf/2508.18756
• Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network

@Machine_learn
2👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Stochastic and deterministic sampling methods in diffusion models produce noticeably different trajectories, but ultimately both reach the same goal.

Diffusion Explorer allows you to visually compare different sampling methods and training objectives of diffusion models by creating visualizations like the one in the 2 videos.

Additionally, you can, for example, train a model on your own dataset and observe how it gradually converges to a sample from the correct distribution.

Check out this GitHub repository:
https://github.com/helblazer811/Diffusion-Explorer

@Machine_learn
6