Machine learning books and papers
22.8K subscribers
974 photos
54 videos
928 files
1.31K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.iss.one/Machine_learn
Download Telegram
WIS Python programming course started in 2024.04

📖 Github

@Machine_learn
Large language models (LLMs): survey, technical frameworks,
and future challenges

https://link.springer.com/content/pdf/10.1007/s10462-024-10888-y.pdf

@Machine_learn
Forwarded from Papers
با عرض سلام در راستاي ادامه تحقيقات مشترك سعي داريم از ١ ام دي ماه روي حوزه ي LLM مدل ها كار كنيم.
این کار تحت نظر استاد
Rex (Zhitao) Ying
انجام میشه.
link: https://scholar.google.com.au/citations?user=6fqNXooAAAAJ&hl=en
۲نفر براي همکاری نياز داريم.

BioPars: a pre-trained biomedical large language model for persian biomedical text mining.
١- مراحل اوليه: جمع اوري متن هاي فارسي بيولوژيكي از منابع (...)
٢- پيش پردازش متن ها و تميز كردن متن ها
٣- اموزش ترنسفورمرها ي مورد نظر
٤- استفاده از بردارها ي اموزش داده شده در سه تسك (...)
دوستاني كه مايل به مشاركت هستن مي تونين تا ١ دي بهم اطلاع بدن.
هزينه سرور به ازاي هر ساعت ١.٢ دلار مي باشد. و حدود ٢ هزار ساعت براي اموزش مدل زباني نياز ميباشد. هزينه به ترتيب براي نفرات علاوه بر انجام تسك ها به صورت زير مي باشد.
🔹نفر چهارم 500 دلار
🔺نفر پنجم 400 دلار
@Raminmousa
@Machine_learn
https://t.iss.one/+SP9l58Ta_zZmYmY0
Please open Telegram to view this post
VIEW IN TELEGRAM
📃 Large language models and their applications in bioinformatics

📎 Study the paper

@Machine_learn
1
⚡️ Byte Latent Transformer: Patches Scale Better Than Tokens

Byte Latent Transformer architecture (BLTs), a new byte-level LLM architecture that for the first time, matches tokenization-based LLM performance at scale, with significant improvements in inference efficiency and robustness.

🖥 Github: https://github.com/facebookresearch/blt

📕 Paper: https://arxiv.org/abs/2412.09871v1

🌟 Dataset: https://paperswithcode.com/dataset/mmlu

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
📃A Comprehensive Survey on Automatic Knowledge Graph Construction

📎 Study paper

@Machine_learn
🀄 GuoFeng Webnovel: A Discourse-Level and Multilingual Corpus of Web Fiction

🖥 Github: https://github.com/longyuewangdcu/guofeng-webnovel

📕 Paper: https://arxiv.org/abs/2412.11732v1

🌟 Dataset: www2.statmt.org/wmt24/literary-trans

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Introduction to Data Science – Lecture Material

🔗 Github

@Machine_learn
👍3
تنها نفر ۴ ام از این کار مشترک باقی مونده
شروع کار ۱ دی ماه هستش. جهت همکاری به ایدی بنده پیام بدین.
@Raminmousa
Practitioner Guide for Creating Effective Prompts in Large Language Models

🔗 Paper

@Machine_learn
1👍1
🌟 SmolLM2



SmolLM2-1.7B🟢SmolLM2-1.7B-Instruct🟢Instruct GGUF

SmolLM2-360M🟠SmolLM2-360M-Instruct 🟠Instruct GGUF

SmolLM2-135M 🟠SmolLM2-135M-Instruct 🟠Instruct GGUF от комьюнити


▶️SmolLM2-1.7B :

from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-1.7B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))


📌Apache 2.0 License.


🟡Demo SmolLM2 1.7B


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Perfect Roadmap To Learn Data Science In 2024

📖 Book

@Machine_learn
Gemini API Cookbook

📚 Github


@Machine_learn
1
New o3 OpenAI model is changing the game!

For a long time, ARC was seen as proof that AI models “can’t think.” The argument went: if they truly could, why do they perform so poorly on this benchmark?

Well, those days are over. The o3 model demonstrates not only the ability to think but also the capability to tackle tasks once considered out of reach.

👀 Check out the full breakdown of this breakthrough: https://arcprize.org/blog/oai-o3-pub-breakthrough

It might be time to rethink what AI can achieve. Looking forward to the release!

@Machine_learn
👍2
Please open Telegram to view this post
VIEW IN TELEGRAM
The Art of Data Science.pdf
6.2 MB
Book: The Art of Data Science
Authors: Roger D. Peng & Elizabeth Matsui

@Machine_learn
👍21
Probability, Random Processes, and Statistical Analysis Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance

📕 Book


@Machine_learn
2