Machine learning books and papers
22.9K subscribers
977 photos
54 videos
928 files
1.32K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.iss.one/Machine_learn
Download Telegram
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI

🖥 Github: https://github.com/935963004/labram

📕Paper: https://arxiv.org/abs/2405.18765v1

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Papers
سلام دوستاني كه مقاله براي ارسال به ژورنال دارن مي تونن بنده رو به عنوان داور در سه ژورنال زير معرفي كنند
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)

Name:Ramin Mousa
Email: [email protected]

همچنين دوستاني كه مقاله براي ارسال دارن مي تونن قبل ارسال جهت بررسي به بنده ارسال كنن تا يك پيش داوري انجام بدم.
@Raminmousa
@Paper4money
@Machine_learn
An Infinite Descent into Pure Mathematics

📚 Book

@Machine_learn
3👍1
Neural Networks, Machine Learning, and Image Processing

📚 book

@Machine_learn
3
Blockchain 2nd IBM Limited Edition

📓 Book

@Machine_learn
👍1
⚡️ Apple Depth Pro

# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .

# Download pretrained checkpoints:
source get_pretrained_models.sh

# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg

# Running from python
from PIL import Image
import depth_pro

model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.







🟡Demo
🟡Arxiv
🖥GitHub

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Mathematical theory of deep learning

📚 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Deep Learning and Computational Physics - Lecture Notes, University of South California

📓 book

@Machine_learn
5
Financial Machine Learning

📓 book

@Machine_learn
👍1
Generalizable and Animatable Gaussian Head Avatar

🖥 Github: https://github.com/xg-chu/gagavatar

📕 Paper: https://arxiv.org/abs/2410.07971v1

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Artificial Intelligence A Modern Approach

📚 Book

@Machine_learn
👍2🔥2
📃Fake news detection: A survey of graph neural network methods

📎 Study paper


@Machine_learn
3👍2
UC Berkeley's "Machine Learning" lecture notes

📓 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Probability and Statistics The Science of Uncertainty

📖 book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
4
با عرض سلام خيلي از دوستان در رابطه با طراحي صفر تا صد پروژه هاي ديپ از بنده سوال پرسيدن داخل پك زير ٣٦ پروژه رو با جزئيات شرح دادم:

1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
دوستاني كه نياز به اين پروژه ها دارن ميتونن با بنده در ارتباط باشن.
@Raminmousa
@Machine_learn
👍71
Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts

💻 Github: https://github.com/freedomintelligence/apollomoe

🔖 Paper: https://arxiv.org/abs/2410.10626v1

🤗 Dataset: https://paperswithcode.com/dataset/mmlu

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍1
Neural Networks and Deep Learning

📓 book

@Machine_learn
👍2
Thesis2 2.pdf
5.5 MB
Thesis: Yolo object detection

این پروژه سال ۲۰۲۰ با یکی از دوستان انجام دادیم که هدف تشخیص وزن پل با استفاده از Yolo بود. جزئیات مدل یولو رو داخل این بررسی کردیم . برای دوستانی که می خوان بیشتر این مدل رو بررسی کنن می تونه مفید باشه.
@Machine_learn
🔥3