Machine learning books and papers
23K subscribers
977 photos
54 videos
928 files
1.32K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.iss.one/Machine_learn
Download Telegram
🌟 GRIN MoE: Mixture-of-Experts от Microsoft.


🟢total parameters: 16x3.8B;
🟢active parameters: 6.6B;
🟢context length: 4096;
🟢number of embeddings 4096;
🟢number of layers: 32;
https://t.iss.one/deep_learning_proj


🟡Arxiv
🟡Demo
🖥Github

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
LLaMA-Omni: Seamless Speech Interaction with Large Language Models

Paper: https://arxiv.org/pdf/2409.06666v1.pdf

Code: https://github.com/ictnlp/llama-omni

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Python for OSINT. 21-day course for beginners

📚 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2
Fundamentals of Data Engineering

📌 Book
📌Download

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41🔥1
MiniCPM-V

MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone
                                                                   
Creator: OpenBMB
Stars ⭐️: 11.4k
Forked By: 798
GitHub Repo:
https://github.com/OpenBMB/MiniCPM-V

       
Join https://t.iss.one/deep_learning_proj

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31
📃Large Language Models on Graphs: A Comprehensive Survey


📎 Study paper

@Machine_learn
👍4
ban.pdf
1.4 MB
‏INDCAPS: The IndRNN Capsule Approach for Persian Multi-
‏Domain Sentiment Analysis

یکی از بحث های که این روزها خیلی ترند هستش بحث مربوط به طبقه بندی احساسات چندجمله ای می باشد. در این مقاله ما یک مجموعه داده که روی داده های دیجی کالا می باشند رو جمع اوری کردیم. جمع اوری این داده ها ۳ ماه طول کشیده و این ریپورت گزارش مربوط به این داده هاست.

@Raminmousa
@Machine_learn
👍1
Financial Machine Learning

📓 book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍2
📃SOCIAL NETWORK ANALYSIS: FROM GRAPH THEORY TO APPLICATIONS

📎 Study paper

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Please open Telegram to view this post
VIEW IN TELEGRAM
Exercises in Machine Learning

📚 Book


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31
📑 Advancing biomedical discovery and innovation in the era of big data and artificial intelligence
💥 Perspective Article



📎 Study the paper

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Improving LLM Reasoning using SElf-generated data:RL and Verifiers

📓 Slides

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Recommendation with Generative Models

📓 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
📃 Natural Language Processing Methods for the Study of Protein-Ligand Interactions

🗓Publish year: 2024



📎 Study the paper
@Machine_learn
👍1
Here are some Hyperparameter (HP) tuning & optimization packages you can use in your projects:

- Scikit-Optimize: https://lnkd.in/gbJqdFq9
- Optuna: https://optuna.org/
- Hyperopt: https://lnkd.in/gPSRhW_6
- Ray.tune: https://lnkd.in/gzrDAbHg
- Keras tuner: https://lnkd.in/g_HDHiug
- BayesianOptimization: https://lnkd.in/g8UKEvjc
- Metric Optimization Engine (MOE): https://lnkd.in/g89JGFB2
- Spearmint: https://lnkd.in/gJwG3AwE
- GPyOpt: https://lnkd.in/g4cWEBPz
- SigOpt: https://sigopt.com/
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
How to Train Long-Context Language Models (Effectively)

🖥 Github: https://github.com/hijkzzz/pymarl2

📕 Paper: https://arxiv.org/abs/2410.02511v1

Dataset: https://paperswithcode.com/dataset/smac

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild

Paper: https://arxiv.org/pdf/2409.12259v1.pdf

Code: https://github.com/rolpotamias/WiLoR

Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI

🖥 Github: https://github.com/935963004/labram

📕Paper: https://arxiv.org/abs/2405.18765v1

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
1