π₯ pyribs: A Bare-Bones Python Library for Quality Diversity Optimization
A bare-bones Python library for quality diversity optimization.
π₯ Github: https://github.com/icaros-usc/pyribs
β© Paper: https://arxiv.org/abs/2303.00191v1
βοΈ Dataset: https://paperswithcode.com/dataset/quality-diversity-benchmark-suite
@Machine_learn
A bare-bones Python library for quality diversity optimization.
π₯ Github: https://github.com/icaros-usc/pyribs
β© Paper: https://arxiv.org/abs/2303.00191v1
βοΈ Dataset: https://paperswithcode.com/dataset/quality-diversity-benchmark-suite
@Machine_learn
π2β€1
what you know about chatGPT?
Do you want us to give you information about this on the channel?
Do you want us to give you information about this on the channel?
Anonymous Poll
80%
π
20%
π
π1
OReilly.Python.in.a.Nutshell.pdf
5.8 MB
Python in a Nutshell: A Desktop Quick Reference, 4th Edition (2023)
#python #2023 #book
@Machine_learn
#python #2023 #book
@Machine_learn
π3π₯1
Hariom_Tatsat,_Sahil_Puri_,_Brad_Lookabaugh_Machine_Learning_and.pdf
13.6 MB
Machine Learning & Data Science Blueprints for Finance From Building
Trading Strategies to Robo-Advisors Using Python
Authors: Hariom Tatsat, Sahil Puri & Brad Lookabaugh (2021)
#ML #book
@Machin_learn
Trading Strategies to Robo-Advisors Using Python
Authors: Hariom Tatsat, Sahil Puri & Brad Lookabaugh (2021)
#ML #book
@Machin_learn
β€7π₯1
Packt.Agile.Model-Based.Systems.Engineering.Cookbook.pdf
35.4 MB
Agile Model-Based Systems Engineering Cookbook: Improve system development by applying proven recipes for effective agile systems engineering, 2nd Edition (2023)
#Book #2023
@Machine_learn
#Book #2023
@Machine_learn
β€4
ChatGPT.Prompts.Mastering.pdf
757.3 KB
ChatGPT Prompts Mastering: A Guide to Crafting Clear and Effective Prompts β Beginners to Advanced Guide (2023)
Author: Christian Brown
#book #GPT #2023
@Machine_learn
Author: Christian Brown
#book #GPT #2023
@Machine_learn
π₯6β€1
β© OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic Occupancy Perception.
OpenOccupancy first surrounding semantic occupancy perception benchmar.
π₯ Github: https://github.com/jeffwang987/openoccupancy
β© Paper: https://arxiv.org/abs/2303.03991v1
βοΈ Dataset: https://paperswithcode.com/dataset/synthcity
π¨ Project: https://www.mmlab-ntu.com/project/styleganex/
@Machine_learn
OpenOccupancy first surrounding semantic occupancy perception benchmar.
π₯ Github: https://github.com/jeffwang987/openoccupancy
β© Paper: https://arxiv.org/abs/2303.03991v1
βοΈ Dataset: https://paperswithcode.com/dataset/synthcity
π¨ Project: https://www.mmlab-ntu.com/project/styleganex/
@Machine_learn
β€2π1
Apress.Pro.Deep.Learning.pdf
15.9 MB
Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python (2023)
Author: Santanu Pattanayak
#book #DL #Book #2023
@Machine_learn
Author: Santanu Pattanayak
#book #DL #Book #2023
@Machine_learn
π₯8β€3π3
Apress.Explainable.AI.Recipes.pdf
8.2 MB
Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python (2023)
Author: Pradeepta Mishra
#XAI #Ai #DL #Python
#2023
@Machine_learn
Author: Pradeepta Mishra
#XAI #Ai #DL #Python
#2023
@Machine_learn
β€5
OReilly.Python.in.a.Nutshell.pdf
5.8 MB
Python in a Nutshell: A Desktop Quick Reference, 4th Edition (2023)
Author: Alex Martelli
#book #python #2023
@Machine_learn
Author: Alex Martelli
#book #python #2023
@Machine_learn
π3β€2
Python Deep Learning.pdf
24 MB
Book: Python Deep Learning
Second Edition(Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow)
Authors: Ivan Vasilev,
Daniel Slater Gianmario ,Spacagna Peter, and Roelants Valentino Zocca
ISBN: 978-1-78934-846-0
year: 2019
pages: 379
Tags: #Python #Tensorflow #Keras #DL
@Machine_learn
Second Edition(Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow)
Authors: Ivan Vasilev,
Daniel Slater Gianmario ,Spacagna Peter, and Roelants Valentino Zocca
ISBN: 978-1-78934-846-0
year: 2019
pages: 379
Tags: #Python #Tensorflow #Keras #DL
@Machine_learn
β€8
Data-Mining-in-Python.pdf
12.8 MB
Book: DATA MINING
FOR BUSINESS ANALYTICS(Concepts, Techniques, and Applications in Python)
Authors: GALIT SHMUELI, PETER C., BRUCE PETER, and GEDECK NITIN R. PATEL
ISBN: Null
year: 2019
pages: 681
Tags: #Python #datamining #business
@Machine_learn
FOR BUSINESS ANALYTICS(Concepts, Techniques, and Applications in Python)
Authors: GALIT SHMUELI, PETER C., BRUCE PETER, and GEDECK NITIN R. PATEL
ISBN: Null
year: 2019
pages: 681
Tags: #Python #datamining #business
@Machine_learn
β€6π6
lecun-20230324-nyuphil.pdf
30.5 MB
Slide: Do large language models need sensory grounding for meaning and understanding
Supervised learning (SL)
Reinforcement learning (RL)
Self-Supervised Learning (SSL)
year:2023
pages:38
tags: #DL #ML #SL #RL #SSL
@Machine_learn
Supervised learning (SL)
Reinforcement learning (RL)
Self-Supervised Learning (SSL)
year:2023
pages:38
tags: #DL #ML #SL #RL #SSL
@Machine_learn
β€6π3π₯1
βοΈTitle: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace
π₯ Github: https://github.com/microsoft/JARVIS
β© Paper: https://arxiv.org/abs/2303.17604v1
@Machine_learn
π₯ Github: https://github.com/microsoft/JARVIS
β© Paper: https://arxiv.org/abs/2303.17604v1
@Machine_learn
π1
Designing Machine Learning Systems.pdf
10 MB
Book: Designing Machine Systems An Iterative Process for Production-Ready Applications
Authors: Chip Huyen
ISBN: 978-1-098-10796-3
year: 2022
pages: 463
Tags: #Python #datamining #ML
@Machine_learn
Authors: Chip Huyen
ISBN: 978-1-098-10796-3
year: 2022
pages: 463
Tags: #Python #datamining #ML
@Machine_learn
π6β€2
WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research
Propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT.
π₯ Github: https://github.com/xinhaomei/wavcaps
β© Paper: https://arxiv.org/abs/2303.17395v1
π§±Dataset: https://paperswithcode.com/dataset/sounddescs
@Machine_learn
Propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT.
π₯ Github: https://github.com/xinhaomei/wavcaps
β© Paper: https://arxiv.org/abs/2303.17395v1
π§±Dataset: https://paperswithcode.com/dataset/sounddescs
@Machine_learn
π2β€1
Algorithms_for_Decision_Making_Mykel_J_Kochenderfer,_Tim_A_Wheeler.pdf
8 MB
Book: Algorithms for Decision Making
Authors: Mykel J. Kochenderfer, Tim A.Wheeler, and Kyle H. Wray
ISBN: Null
year: 2022
pages: 690
Tags: #Decision_Making #NN #LR
@Machine_learn
Authors: Mykel J. Kochenderfer, Tim A.Wheeler, and Kyle H. Wray
ISBN: Null
year: 2022
pages: 690
Tags: #Decision_Making #NN #LR
@Machine_learn
π4
TM-Vector ElseΩ‘.pdf
1.8 MB
Title: TM-vector: A Novel Forecasting Approach for Market stock movement with a Rich Representation of Twitter and Market data
Arxiv link: https://arxiv.org/abs/2304.02094
Authors: Faraz Sasani, @RaminMousa, Ali Karkehabadi, Samin Dehbashi, Ali Mohammadi
doi: https://doi.org/10.48550/arXiv.2304.02094
@Machine_learn
Arxiv link: https://arxiv.org/abs/2304.02094
Authors: Faraz Sasani, @RaminMousa, Ali Karkehabadi, Samin Dehbashi, Ali Mohammadi
doi: https://doi.org/10.48550/arXiv.2304.02094
@Machine_learn
β€6