Data_Analytics_Practical_Guide_to_Leveraging_the_Power_of_Algorithms.pdf
1.2 MB
Data Analytics
Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
#book
@Machine_learn
Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
#book
@Machine_learn
How to Build a Custom YOLOv4 Object Detector using TensorFlow
@Machine_learn
https://morioh.com/p/f9702a8223b2
CODE: https://github.com/theAIGuysCode/tensorflow-yolov4-tflite
@Machine_learn
https://morioh.com/p/f9702a8223b2
CODE: https://github.com/theAIGuysCode/tensorflow-yolov4-tflite
Using Flask to optimize performance with Mask R-CNN segmentation(with source code)
https://medium.com/medialesson/using-flask-to-optimize-performance-with-mask-r-cnn-segmentation-39752f153029
@Machine_learn
https://medium.com/medialesson/using-flask-to-optimize-performance-with-mask-r-cnn-segmentation-39752f153029
@Machine_learn
Medium
Using Flask to optimize performance with Mask R-CNN segmentation
How to improve Mask R-CNN segmentation performance using a Flask web service.
OpenCV Sudoku Solver and OCR
https://www.pyimagesearch.com/2020/08/10/opencv-sudoku-solver-and-ocr/
@Machine_learn
https://www.pyimagesearch.com/2020/08/10/opencv-sudoku-solver-and-ocr/
@Machine_learn
PyImageSearch
OpenCV Sudoku Solver and OCR - PyImageSearch
In this tutorial, you will create an automatic sudoku puzzle solver using OpenCV, Deep Learning, and Optical Character Recognition (OCR).
2_Improving_Deep_Neural_Networks.pdf
992.8 KB
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
@Machine_learn
@Machine_learn
Top 20+ highly ranked Coursera Courses for Data Science & Machine Learning beginners and advanced
@Machine_learn
https://nuggetsnetwork.com/blog/Top-Coursera-DataScience-Courses.html
@Machine_learn
https://nuggetsnetwork.com/blog/Top-Coursera-DataScience-Courses.html
Nuggets Network
https://nuggetsnetwork.com/
Top 20 ranked Best Data Science & Machine Learning Courses from Coursera [2020]
@Machine_learn
Axial-DeepLab: Long-Range Modeling in All Layers for Panoptic Segmentation
https://ai.googleblog.com/2020/08/axial-deeplab-long-range-modeling-in.html
Axial-DeepLab: Long-Range Modeling in All Layers for Panoptic Segmentation
https://ai.googleblog.com/2020/08/axial-deeplab-long-range-modeling-in.html
research.google
Axial-DeepLab: Long-Range Modeling in All Layers for Panoptic Segmentation
Posted by Huiyu Wang, Student Researcher and Yukun Zhu, Software Engineer, Google Research The success of convolutional neural networks (CNNs) main...
Documentation:
1) https://bigml.com/developers
2) https://predictionio.apache.org/datacollection/eventapi/
3) https://docs.anaconda.com/
4) https://github.com/blue-yonder
5) https://docs.mljar.com/
6) https://nupic.docs.numenta.org/
7) https://docs.recombee.com/
8) https://indico.io/docs/
9) https://api.animetrics.com/documentation
10) https://face.eyedea.cz:8080/api/face/docs
11) https://www.betafaceapi.com/wpa/index.php/documentation
12) https://docs.imagga.com/
13) https://wit.ai/docs
14) https://docs.api.bitext.com/
15) https://api.geneea.com/
16) https://www.diffbot.com/dev/docs/
17) https://yactraq.com/contact-trial/
18) https://monkeylearn.com/api/v3/
19) https://help.hutoma.ai/article/ym34wr87lx-hutoma-chat-api
20) https://php-nlp-tools.com/documentation/
@Machine_learn
1) https://bigml.com/developers
2) https://predictionio.apache.org/datacollection/eventapi/
3) https://docs.anaconda.com/
4) https://github.com/blue-yonder
5) https://docs.mljar.com/
6) https://nupic.docs.numenta.org/
7) https://docs.recombee.com/
8) https://indico.io/docs/
9) https://api.animetrics.com/documentation
10) https://face.eyedea.cz:8080/api/face/docs
11) https://www.betafaceapi.com/wpa/index.php/documentation
12) https://docs.imagga.com/
13) https://wit.ai/docs
14) https://docs.api.bitext.com/
15) https://api.geneea.com/
16) https://www.diffbot.com/dev/docs/
17) https://yactraq.com/contact-trial/
18) https://monkeylearn.com/api/v3/
19) https://help.hutoma.ai/article/ym34wr87lx-hutoma-chat-api
20) https://php-nlp-tools.com/documentation/
@Machine_learn
1. Cassie Kozyrkov : https://www.linkedin.com/in/cassie-kozyrkov-9531919/
• Medium : https://medium.com/@kozyrkov
2. Ben Taylor : https://www.linkedin.com/in/bentaylordata/
3. Dat Tran : https://www.linkedin.com/in/dat-tran-a1602320/
4. Ian Goodfellow : https://www.linkedin.com/in/ian-goodfellow-b7187213
5. Jose Marcial Portilla : https://www.linkedin.com/in/jmportilla/
6. Koo Ping Shung : https://www.linkedin.com/in/koopingshung/
7. Lex Fridman : https://www.linkedin.com/in/lexfridman/
8. Kristen Kehrer : https://www.linkedin.com/in/kristen-kehrer-datamovesme/
9. Srivatsan Srinivasan : https://www.linkedin.com/in/srivatsan-srinivasan-b8131b/
10. Andrew Ng : https://www.linkedin.com/in/andrewyng
@Machine_learn
• Medium : https://medium.com/@kozyrkov
2. Ben Taylor : https://www.linkedin.com/in/bentaylordata/
3. Dat Tran : https://www.linkedin.com/in/dat-tran-a1602320/
4. Ian Goodfellow : https://www.linkedin.com/in/ian-goodfellow-b7187213
5. Jose Marcial Portilla : https://www.linkedin.com/in/jmportilla/
6. Koo Ping Shung : https://www.linkedin.com/in/koopingshung/
7. Lex Fridman : https://www.linkedin.com/in/lexfridman/
8. Kristen Kehrer : https://www.linkedin.com/in/kristen-kehrer-datamovesme/
9. Srivatsan Srinivasan : https://www.linkedin.com/in/srivatsan-srinivasan-b8131b/
10. Andrew Ng : https://www.linkedin.com/in/andrewyng
@Machine_learn
Introducing Opacus: A high-speed library for training PyTorch models with differential privacy
https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/
Github: https://github.com/pytorch/opacus
Differential Privacy Series Part 1 | DP-SGD Algorithm Explained: https://medium.com/pytorch/differential-privacy-series-part-1-dp-sgd-algorithm-explained-12512c3959a3
@Machine_learn
https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/
Github: https://github.com/pytorch/opacus
Differential Privacy Series Part 1 | DP-SGD Algorithm Explained: https://medium.com/pytorch/differential-privacy-series-part-1-dp-sgd-algorithm-explained-12512c3959a3
@Machine_learn
Meta
Introducing Opacus: A high-speed library for training PyTorch models with differential privacy
We are releasing Opacus, a new high-speed library for training PyTorch models with differential privacy (DP) that’s more scalable than existing state-of-the-art methods.
Machine learning – Linear Regression Course (Free)
.
Linear regression is perhaps one of the most popular and widely used algorithms in statistics and machine learning.
.
Link : https://bit.ly/31W6yH1
@Machine_learn
.
Linear regression is perhaps one of the most popular and widely used algorithms in statistics and machine learning.
.
Link : https://bit.ly/31W6yH1
@Machine_learn
The Little W-Net that Could
State-of-the-Art Retinal Vessel Segmentation with Minimalistic Models.
Github: https://github.com/agaldran/lwnet
Paper: https://arxiv.org/abs/2009.01907v1
@Machine_learn
State-of-the-Art Retinal Vessel Segmentation with Minimalistic Models.
Github: https://github.com/agaldran/lwnet
Paper: https://arxiv.org/abs/2009.01907v1
@Machine_learn