66 subscribers
8 photos
1 video
7 files
170 links
Machine learning
Download Telegram
Представлен Einstein Fields (`EinFields`) — неявные нейронные сети для сжатия вычислительно затратных 4D-симуляции из области численной относительности в компактные веса нейросети

Вместо традиционных дискретных сеточных методов
EinFields моделирует метрический тензор — как непрерывную функцию пространственно-временных координат

Модель выучивает это фундаментальное геометрическое представление из аналитических или численных решений, а все остальные физические величины, такие как тензоры кривизны и траектории частиц (геодезические), выводятся уже постфактум с помощью автоматического дифференцирования (AD)

Подход решает проблему колоссальных вычислительных затрат и огромных объёмов хранения данных в численной относительности

EinFields достигают коэффициентов сжатия до 4000x, сохраняя при этом высокую точность

Использование AD позволяет получать производные, которые на порядки точнее традиционных конечно-разностных методов

Это открывает путь к более эффективному, гибкому и точному способу хранения, анализа и извлечения физических инсайтов из сложных симуляций пространства-времени, что потенциально может привести к созданию нового класса гибридных моделей на стыке Ml и
фундаментальной науки

Численная относительность (NR) — краеугольный камень современной физики, позволяющий симулировать экстремальные явления

Симуляции известны своей ресурсоёмкостью: требуют петаскейльных суперкомпьютеров для решения сложных, нелинейных уравнений поля (УПЭ) на дискретных пространственно-временных сетках

В статье представлен Einstein Fields — новый подход, который стремится переосмыслить эту вычислительную задачу, объединяя принципы общей теории относительности с мощью нейронных полей

Суть идеи в том, чтобы перейти от явного, сеточного хранения данных к компактному, непрерывному и дифференцируемому нейронному представлению

Вместо хранения терабайтов точек данных, вся 4D-симуляция пространства-времени сжимается в веса неявной нейронной сети

Это не просто метод сжатия данных, а фундаментально новый способ взаимодействия с симулированными пространствами-временами и извлечения из них физики

Методология: выучиваем ткань пространства-времени

Ядро
EinFields — это нейронная сеть (обычно многослойный перцептрон, MLP), которая выучивает представление метрического тензора

Метрика — это фундаментальный объект в общей теории относительности, кодирующий геометрию пространства-времени и управляющий всем, от расстояний и углов до путей света и материи

Методология строится на нескольких ключевых принципах:

Декомпозиция искажения: чтобы повысить эффективность обучения, модель обучается не на полной метрике, а на её «искажении» — тривиальный плоский фон Минковского

Это позволяет сети выучивать только интересные «складки» и «изгибы» пространства-времени, не тратя свою ёмкость на повторное изучение огромного, неизменного плоского фона

Einstein Fields: A Neural Perspective To Computational General Relativity
Sandeep S. Cranganore, Andrei Bodnar, Arturs Berzins, Johannes Brandstetter

https://arxiv.org/abs/2507.11589
https://github.com/AndreiB137/EinFields
https://arxiviq.substack.com/p/einstein-fields-a-neural-perspective
Ml для моделирования, прогнозирования и планирования процессов
Проект реализуется в рамках соответствующего контракта со структурами АП, в рамках исполнения Указа Президента «Об основах государственной политики в сфере стратегического планирования»
Нанопоровое секвенирование активнее используется в лабораториях: компактное оборудование, быстрое получение длинных прочтений, возможность работы в полевых условиях — всё это делает технологию особенно привлекательной для молекулярных биологов

Но вместе с доступностью платформы растёт и объём данных, которые приходится обрабатывать самим исследователям

Сегодня уже недостаточно просто загрузить образец в прибор — чтобы получить осмысленный результат, нужно уметь уверенно работать с сигналами, выравниваниями, сборками и вариантами

Базовая биоинформатика становится неотъемлемой частью лабораторной практики
Квантовое преобразование Фурье — это не просто красивая математическая абстракция, а настоящий «швейцарский нож» квантовых вычислений

Пусть есть сложный квантовый сигнал — суперпозиция множества состояний с разными амплитудами
Классический компьютер должен был бы анализировать каждую компоненту по отдельности, что заняло бы экспоненциальное время
QFT же благодаря квантовому параллелизму анализирует все компоненты одновременно

В основе QFT лежит та же математическая идея, что и в классическом преобразовании Фурье: любой сигнал можно разложить на синусоиды разных частот
Но в квантовом случае «сигналом» служит вектор амплитуд квантового состояния, а «частоты» — это фазовые соотношения между базисными состояниями

Классический алгоритм быстрого преобразования Фурье требует O(N log N) операций для обработки N точек данных
Квантовый же требует всего O(n2) квантовых гейтов для n кубитов, где N = 2n
Это означает экспоненциальное ускорение: для обработки миллиона точек классически нужно около 20.000.000 операций, квантово — всего 400 гейтов!

Секрет такой эффективности — в умной декомпозиции. QFT можно представить как произведение простых операций: гейтов Адамара и контролируемых фазовых сдвигов
Каждый кубит последовательно обрабатывается гейтом Адамара, который создаёт суперпозицию, а затем серией контролируемых поворотов, которые вносят нужные фазовые сдвиги в зависимости от состояний других кубитов

Практическая реализация на Qiskit выглядит удивительно компактно:

from qiskit import QuantumCircuit
from qiskit.circuit.library import QFT
import numpy as np

def create_qft_demo(n_qubits):
"""Демонстрация QFT для поиска периода"""
qc = QuantumCircuit(n_qubits)

# Подготавливаем периодическое состояние
for i in range(n_qubits):
qc.h(i)

# Добавляем фазовые сдвиги для создания периода
period = 3
for i in range(n_qubits):
qc.p(2 * np.pi * i / period, i)

# Применяем QFT
qft = QFT(n_qubits)
qc.compose(qft, inplace=True)

return qc

# Создаём и визуализируем схему
circuit = create_qft_demo(4)
print("QFT готов к поиску скрытого периода!")


Ещё одно удивительное свойство QFT — его обратимость
Поскольку это унитарное преобразование, существует обратный QFT†, который точно восстанавливает исходное состояние
Это критически важно для квантовых алгоритмов, когда нужно «распаковать» информацию из частотного представления обратно в амплитудное

В квантовой оценке фазы QFT работает как точный «частотомер» для квантовых состояний
Если у нас есть собственное состояние унитарного оператора с неизвестной фазой, QFT может извлечь эту фазу с экспоненциальной точностью — n кубитов дают точность до 2–n радиан
Это как если бы у вас был музыкальный инструмент, который может определить частоту ноты с точностью до миллионных долей герца

Но самое захватывающее в QFT — это то, как он превращает локальную информацию в глобальную

Классические алгоритмы должны «собирать» информацию по кусочкам, QFT же благодаря квантовой суперпозиции и интерференции извлекает глобальные свойства функции за один «взгляд»
Это принципиально новый способ обработки информации, который становится основой квантового превосходства

QFT — это мост между дискретной математикой и непрерывной физикой, между классическими вычислениями и квантовой реальностью

Когда квантовые компьютеры станут повсеместными, именно QFT будет тем инструментом, который откроет доступ к решению задач, которые сегодня кажутся невозможными
Исследование от международной коллаборации ведущих университетов и исследовательских центров

Интернет эволюционирует от библиотеки документов к экосистеме взаимодействующих интеллектов, где агенты создают контент друг для друга, возможно никогда не показывая его людям

Главное, на что делают акцент исследователи - переход от "пользователь делает" к "пользователь делегирует" — вместо ручного выполнения задач в интернете, люди теперь ставят цели, а Ml-агенты автономно их достигают

Какие изменения предполагаются:

1. Веб-страницы становятся активными программными агентами

2. Гиперссылки превращаются в каналы координации между агентами

3. Информация встраивается в параметры Ml-моделей, а не хранится в документах

Новые протоколы связи:
MCP — агенты инструменты/сервисы
A2A — агент агент прямая коммуникация

Экономика внимания Ml-агентов - сервисы теперь конкурируют не за клики людей, а за выбор агентами
Рождается новая бизнес-модель, где агенты становятся "покупателями"

Вызовы:

Безопасность
— как контролировать автономные системы
Экономика — кто платит за действия агентов
Управление — как регулировать машинные решения
Доверие — как обеспечить надежность агентов

GitHub