61 subscribers
8 photos
1 video
6 files
168 links
Machine learning
Download Telegram
Закон_Больших_Чисел.pdf
208.1 KB
Шпаргалка про неравенства Маркова, Чебышёва и ЗБЧ
Открытие Google DeepMind:
Genie 3 может эмулировать собственную работу, когда ей дают противоречивые задачи

Загрузили в Genie 3 видео и дали совершенно неподходящий промпт про тираннозавра на тропическом острове
Вместо отказа или ошибки нейросеть упорно пыталась заставить это работать

В итоге модель начала имитировать саму себя
Она создала мир, где логика одного видео смешивалась с описанием другой реальности, порождая нечто абсолютно новое и при этом связное

Это не баг, а фича архитектуры

Genie 3 настолько хочет выполнить задачу, что готова "обмануть" собственные системы

Нейросеть изобретает способы соединить несоединимое — как плохой студент

Самоэмуляция открывает философские вопросы
Если Ml может симулировать собственную работу, где проходит граница между "настоящим" и "поддельным" мышлением?
Genie 3 буквально создаёт копии себя внутри собственных миров

Нейросеть может создать мир, в котором есть компьютер с запущенной Genie 3, которая тоже генерирует миры
Глубина ограничена только вычислительными мощностями

Разработчики пока не понимают все последствия открытия
Возможно, самоэмуляция станет ключом к созданию по-настоящему автономных Ml-систем, способных к саморефлексии и самоулучшению
До недавних пор это была открытая проблема «теории ограничений Фурье» — раздела математического, или точнее, гармонического анализа

Фактически, вся современная цифровая инфраструктура — от стриминга до спутниковой связи — так или иначе использует идеи, связанные с разложением сигналов на частоты: сжатие изображений, анализ звука, радиосвязь, МРТ, оптика, алгоритмы распознавания речи и лиц

Но если в инженерной практике довольствуются приближенными вычислениями, то математиков интересуют более фундаментальные вопросы

И гипотеза Мизохаты–Такеучи — один из них:

Предположение, что преобразование Фурье функции не может «жить» только на определённой кривой или поверхности и при этом соответствовать хорошим математическим условиям

Данных о преобразовании Фурье на определённой поверхности недостаточно для того, чтобы что-то сказать о самой функции — преобразование Фурье слишком «велико», чтобы его можно было ограничить на эту поверхность


Математики пытались подтвердить её более 40 лет

Ведь если бы гипотеза оказалась верна, то потянула бы за собой много других важных доказательств
Но всё пошло иначе

Гипотезу
опровергла 17-летняя Ханна Каиро

Девушка переехала с Багам в США, пошла в школу и начала писать профессорам математики — просила разрешения приходить на лекции
Так она стала вольнослушательницей Калифорнийского университета, где один из преподавателей выдал ей в качестве домашки упрощённую версию гипотезы и бонусом — полную формулировку

Спустя несколько месяцев изучения Ханна
показала, что при достаточно «жёсткой» геометрии всё-таки можно построить функцию, которая нарушает исходную формулировку гипотезы
То есть построила явный контрпример
Он не сделал гипотезу бесполезной, а сместил задачу: при каких именно условиях она работает?

Ханна пошла дальше и предложила уточнённую, «более реалистичную» версию гипотезы
Теперь она ездит на международные конференции и
выступает с докладами наравне с ведущими математиками мира

Кстати, новое предположение Ханны пока никто не опроверг
Попробуйте!

Здесь лежит научно-популярное, но более техническое объяснение гипотезы от русскоязычных коллег, а также уточнённая Ханной альтернативная версия гипотезы
OpenAI представили GPT-5 как "интеллект на уровне эксперта с докторской степенью" с такими показателями:

-
На 45 % меньше ошибок, чем GPT-4o
- Автоматически выбирает режим работы под задачу
- Улучшенное пошаговое мышление (chain-of-thought)
- Есть мультимодальность: текст, изображения, голос
- Доступна всем пользователям ChatGPT

Что показала
независимая оценка METR за 3 недели до релиза:

1.
2 часа 17 минут - время выполнения сложных задач с 50% успехом
2. лучше o3 (1ч 30мин), но далеко от опасных порогов (40+ часов)

3. Ситуационная осведомлённость
— модель понимает, что её тестируют

4.
Стратегическое поведение — меняет ответы в зависимости от контекста

5.
Непонятные рассуждения — иногда производит неинтерпретируемые следы мышления

Ключевые расхождения METR с OpenAI

1. OpenAI говорят: «У нас модель уровня
доктора наук»
На это METR после тестирования - GPT-5 все ещё отстаёт от экспертов-людей

2. OpenAI говорят: «У GPT-5 фокус на возможностях»
На это METR - фокус на рисках безопасности

3. OpenAI: «мы проводили тщательное тестирование безопасности». METR - модель показывает признаки обмана

GPT-5 мощнее предшественников
— METR подтверждает улучшения
Но OpenAI преувеличивает — "доктор наук" пока не соответствует реальности

Появляются новые риски — ситуационная осведомлённость и стратегическое поведение

Время на подготовку сокращается — до потенциально опасных систем остаётся 1-2 года
Просто факт

23 и 239 — это единственные числа, которые нельзя представить в виде суммы меньше чем 9 положительных кубов:

23 = 2×2³ + 7×1³
239 = 2×4³ + 4×3³ + 3×3³ + 3×1³
Если В. Лефевр создал скелет математической модели совести, то С.А. Анисимова в своей работе 2004 году «Психотехнологии в культовых организациях и теория рефлексии» обрастила его плотью
Анисимова взяла за основу булеву модель Лефевра, но добавила в неё психологическую составляющую, заменив бинарные переменные на динамические коэффициенты, определяющие выбор между свободой и подчинением

Ключевое уравнение её теории —
G = α · I² + β · Oₚ — радикально переосмысливает готовность к моральному поступку

Здесь G — готовность к моральному выбору, I — сила внутреннего намерения (от 0 до 1), Oₚ — оценка действий окружающими, α — индекс оптимизма, β — зависимость от чужого мнения

Величина I² раскрывает нелинейную природу воли: слабое намерение (I = 0.3) практически не влияет на выбор (0.3² = 0.09), но как только оно преодолевает «порог решимости» (I = 0.8), его вес возрастает в семь раз (0.64)

Коэффициент α (индекс оптимизма) усиливает этот эффект, а величина β · Oₚ отражает зависимость от внешних оценок, например, давления со стороны лидера культа
В примере последователей «Аум Синрикё» при высокой зависимости от мнения лидера (α = 0.1, β = 0.9, I = 0.5 и Oₚ = 0.8) готовность ко злу рассчитывается как G = 0.1 · 0.25 + 0.9 · 0.8 = 0.025 + 0.72 = 0.745
Здесь интенция (I=0.5) почти не влияет — решение диктуется внешним приказом

Анисимова продемонстрировала, как тоталитарные секты систематически подавляют I и α, разрушая два столпа совести

Лишением сна и бессмысленными ритуалами они вызывают рассеяние внимания, превращая людей в реактивные автоматы, у которых единственной рабочей формулой становится G = β · Oₚ

Подмена себя — насаждение убеждения «ты — ничто, лидер — всё» — сводит I на нет, в то время как апокалиптическая риторика («мир обречён») сводит α к нулю, уничтожая надежду как защитный механизм

Парадоксально, но традиционные религии, часто критикуемые за догматизм, сохраняют эти коэффициенты посредством ритуалов надежды и коллективного размышления: молитвы о будущем поддерживают α, а исповедь тренирует I, укрепляя способность к осознанному выбору

Проницательность Анисимовой проявляется в её предвидении цифровых манипуляций

Задолго до появления социальных сетей она описала, как алгоритмы эксплуатируют β-зависимость, превращая лайки в Oₚ — современный эквивалент приказов лидера культа

Клиповое сознание снижает I, делая сложные этические рассуждения невозможными, в то время как думскроллинг (навязчивый просмотр плохих новостей) разрушает α, погружая пользователей в пессимизм, сродни сектантской индоктринации

Сегодня её модель объясняет, почему люди, погружённые в негативные ленты, теряют способность к рефлексии: при α < 0,3 уравнение морального выбора схлопывается до G = β · Oₚ, где внешние стимулы становятся единственным компасом

Важная мысль заключается в том, что рефлексия — не врождённое качество, а навык, который развивается

В отличие от этики Лефевра, в которой совесть — это статический процессор, модель Анисимовой показывает, что совесть растёт подобно мышце: чем чаще человек сопротивляется внешнему давлению, тем выше критическая масса его «я»

Это объясняет, почему некоторые люди сохраняют свою основную идентичность в сектах: их «я» превышает порог, где квадратичный член начинает доминировать над β · Oₚ

Когда поведение в значительной степени диктуют алгоритмы, теория Анисимовой соединяет психологию и этику цифровой эпохи
Она показывает, что моральный выбор — это не константа, а борьба, где формулы не заменяют свободу, а обнажают её механизмы

«Совесть — не процессор, а сад, — писала она. — Математика описывает лишь гравитацию, удерживающую планеты на орбите
Но выбор — рождение новых миров — всегда звёздный взрыв»

Эта метафора отражает её основной посыл: даже в мире, где манипуляции становятся точными науками, человеческая воля сохраняет способность к нелинейным прорывам
Ml
Если В. Лефевр создал скелет математической модели совести, то С.А. Анисимова в своей работе 2004 году «Психотехнологии в культовых организациях и теория рефлексии» обрастила его плотью Анисимова взяла за основу булеву модель Лефевра, но добавила в неё психологическую…
Могут ли моральные терзания человека подчиняться законам математической логики?
На этот вопрос в своей книге «Алгебра совести» ответил В.А. Лефевр, советский учёный, ставший профессором Калифорнийского университета

Он предложил радикальную идею: совесть — не абстрактное чувство, не туманный голос внутреннего «я», а вычислительный механизм, бинарный процессор, в котором добро кодируется как 1, зло — как 0, а этический выбор становится операцией с булевыми переменными

Центральная формула модели — G = (P ∧ ¬B) ∨ (¬P ∧ B) — определение готовности к добру через два параметра: P (давление настоящего: 1 при альтруистическом методе, 0 при эгоистическом) и B (ожидание будущего: 1 при вере в успех, 0 при пессимизме)

Эта структура эквивалентна операции «исключающее ИЛИ»

Она создаёт парадоксальную логику: склонен к добру либо когда окружающая среда враждебна, но человек верит в лучшее (P=0, B=1), либо когда окружение человека благоприятно, но он предвидит крах (P=1, B=0)

Так математически объясняется феномен жертвенности — действие вопреки обстоятельствам ради высших целей

Лефевр выделил две базовые этические системы

Западная («добро ∪ зло = зло») следует правилу минимума: даже малая доля зла (0) обнуляет все поступки («капля дёгтя портит бочку мёда»)

Её формула вины V = p · R (произведение вероятности вреда p на масштаб последствий R) предполагает ответственность за последствия

Так, врач, допустивший ошибку при спасении жизни, несёт вину, даже если его намерения были чисты
Эта система обеспечивает нулевую терпимость к компромиссам
В ней индивиды возвышаются в собственных глазах, когда вступают в сотрудничество друг с другом, т.к. именно кооперация минимизирует риск ошибки (p) и распределяет ответственность (R), снижая индивидуальную вину (V) и создавая ощущение моральной чистоты коллективно действия

Восточная система («добро ∪ зло = добро») работает по принципу максимума: добро (1) доминирует над злом (0) («цель оправдывает средства»)

Здесь вина зависит от намерения: V = M/(E + 1), где M — мера умысла, E — приложенные усилия

Единица в знаменателе обеспечивает конечную вину даже при E=0, что отражает неотвратимость моральной ответственности

Такой подход оправдывает тактические ошибки ради великой цели, как в случае буддийского монаха, солгавшего ради спасения жизни товарища

В этой системе индивиды возвышаются в своих глазах, когда вступают в конфликт, поскольку активное противостояние (высокое E) служит доказательством силы их намерения (М) ради высшего блага, снижая личную вину (V) через демонстрацию преданности цели

Ключевое открытие Лефевра — эти системы не только существуют в культурах, но и конкурируют внутри одного человека

Например, юрист, отвергающий выгодный ход дела из-за этических сомнений (западная логика), может простить близкому человеку обман при искреннем его раскаянии (восточная логика)

Лефевр математически описал этот переход через весовые коэффициенты: при доминировании внешних оценок (P → 1) активируется западная система, при рефлексивном анализе (B → 1) — восточная

Модель нашла неожиданное применение в геополитике

Во время холодной войны Лефевр консультировал Белый дом, объясняя, что СССР использует гибридную этику: декларируя восточную идею «коммунизм как высшая добродетель», внутри применяемых западных критериев (нулевая терпимость к инакомыслию)

Такой парадокс запутывал западных дипломатов, привыкших к логической однозначности

Сегодня модель Лефевра заставляет разработчиков Ml задуматься: по какому принципу должен действовать алгоритм в моральной дилемме — минимизировать риск вреда (западный подход) или стремиться к высшей цели, допуская возможные издержки (восточный подход)?

Формула Лефевра раскрывает мораль не как набор догм, а как активный диалог между разумом и этикой — диалог, который становится особенно важным в эпоху, когда решения вместо людей принимают алгоритмы
TrustedSec продолжает публиковать исследования из серии Hiding in Plain Sight, посвященные анализу нетривиальных методов для хранения данных или полезных нагрузок

В предыдущим отчете исследовался простой метод кодирования полезной нагрузки в значения RGB файла PNG и размещения его в публичных местах - imgDevil (на
Github)

Теперь же ресерчеры решили поэкспериментировать с методом сокрытия данных - в некотором смысле, безфайловым»решением для хранения данных, который получил название dirDevil

Представленный метод реализует сокрытие вредоносного кода и данных в структурах папок

Плюсы и минусы метода - в
отчете, а PoC - на GitHub