ML & AI resources
171 subscribers
165 photos
13 videos
7 files
502 links
Explore AI & Deep Learning with us. Join our Telegram channel for the latest insights and tutorials, managed by CE students from Amirkabir University of Technology.

🆔 @ML_AI_resourses
Download Telegram
#Roadmap 2022

این رو برای یک دوستی که تازه داره سعی می‌کنه وارد، ماشین‌لرنینگ بشه نوشتم ؛
اول اینکه توجه کنید,
۱- ایشون تازه برای کارشناسی بورسیه گرفته و قراره شروع کنه درسش رو
۲- پایتون رو در سطح متوسطی بلد هست و چندسالی هست که کد میزنه (Data structure, Algorithm رو متوجه‌ هست)
۳- علاقه شدیدی به هوش مصنوعی داره و برخلاف خیلی‌ها که می‌خوان سریعتر کد بزنن ترجیح میده وقت بیشتری توی مقدمات بذاره تا حرفه‌ای تر جلو بره


RoadMap :

1- Numpy (and scipy):

. Python Numpy Beginners (AI publishing)
. Scientific Computing with Python .... 2nd edition (Claus Fuhrer - packt pub)
* High performance python ... 2nd edition (O'Reilly)

2- Pandas:

Effective Pandas (Matt Harrison)
Pandas in Action (Manning Pub)
Pandas 1.x cookbook ... 2nd edition (Packt pub)

3- Matplotlib (or other visualization libs)

Hands on matplotlib (Ashwin - Apress pub)
Data visualization with python for beginners ... ( AI publishing)

چیزی که خیلی مهمه اینه کار با OOP، api رو توی این کتابخونه یاد بگیرید.

3- Data Engineering
نه کامل اما بعضی مباحث واقعاً لازم هست :
Sql / NoSql / PySpark
اینها مباحثی هست که خیلی بدرد میخوره معمولاً

4- Scikit-learn :

Hands on machine learning with scikit-learn, ... (O'Reilly) - Part 1 only

Machine learning with pytorch and scikit-learn (Packt pub) - Part 1 only

5- Story telling
کتاب‌های زیادی برای این مورد وجود داره که بسته به علاقه و نوع نوشتاری که می‌پسندید می‌تونید انتخاب کنید

اما این بخش رو اصلا دستکم نگیرید (۹۹.۹٪ آموزش‌ها این موضوع رو منتقل نمی‌کنند و ۱۰۰٪ توی کار این موضوع واجب و حیاتی هست)

6-
آمار و احتمالات / ریاضیات / جبر

بستگی به خودتون داره؛ اگر فکر می‌کنید لازم هست کمی ریاضیات پایه رو مرور کنید
آمار و احتمال رو شاید بهتره حتی قبل از scikit-learn مرور کنید

کتابهای با عنوان statistical learning وجود داره برای پایتون که به سلیقه خودتون می‌تونید بخونید.
7- Deep learning (practical)

۲ تا کتابی که برای Machine learning معرفی کردم بخش دوم هر ۲ کتاب رو می‌تونید اینجا شروع کنید
Deep learning with python 2nd edition (Manning pub)
هم حتماً برای اونایی که Tensorflow هم می‌خوان کار کنند باید خونده بشه

اگر قرار هست کارهای deploy , ... هم انجام بدید اون خودش ی roadmap اساسی میخواد اما بطور ساده :

ML engineering / MLOps / Linux / Docker / Api development (FastApi) / Edge deployment (Tiny ML)

حداقل چیزهایی هست که لازم دارید.
بعد با توجه به بیزینس و علاقه به بخش‌های مختلفش شاخ و برگ میدید.

پ.ن : برای بخش‌های مختلف چندکتاب معرفی شد، چون نوع نوشتار بعضی از کتابها ممکن مورد پسند شما نباشه
لازم نیست همه‌ی چند مورد رو بخونید.

کتاب :
High performance python
جزو واجبات هست که بنظرم همه باید بخونند.
🤩1
Forwarded from Tensorflow(@CVision) (Alireza Akhavan)
#کورس #منبع
📺 ML YouTube Courses

اینج اغلب کورس های رایگان یادگیری عمیق و یادگیری ماشین که تو یوتیوب قرار داده شده لیست شده...

https://github.com/dair-ai/ML-YouTube-Courses
😱1
یه بلاگ دارای محتویات nlp دار و بیگ دیتا
پایینم صرفا قسمت معرفی بلاگرشه
About | Sijun He

Looks like somebody has stumbled upon my blog!

My name is Sijun He. I am currently a machine learning engineer at Twitter Cortex focusing on Deep Learning and NLP for content understanding. Before that, I was a data scientist at Autodesk, where I did analytics & data mining on products(i.e. AutoCAD, Revit, Maya, etc.) that help engineers design towering skyscrapers and filemakers craft Oscar-winning visual effects.

The blog documents my journey of learning data science from scratch. It will mostly be reading notes and personal projects I have done for work, school or fun. The blog is a journal for myself. Whenever I am upset about not making enough progress (happens ALL THE TIME), I read my blog and remind myself of how far I have gone. If you like the blog, I encourage you to have one for yourself.

https://sijunhe.github.io/
🤯2
مطالب جالبی تو این بلاگ پیدا میشه
به شدت توصیه می کنم

https://peterroelants.github.io/
🎉1🤩1
Forwarded from Ai Events️ (حمید محمودآبادی)
از خیره شدن به مانیتورتون برای پایان آموزش مدل خسته شدید؟

𝗺𝗹𝗻𝗼𝘁𝗶𝗳𝘆 یه پکیج خیلی ساده منبع باز پایتونه که با یه خط ساده کد زدن، بهتون یه QR میده، شما اسکنش می‌کنید و منتظر می‌مونید تا اتفاقاتی که در طول آموزش مدل می‌افته رو از طریق نوتیفیکیشن گوشی‌تون دریافت کنید!!!

اول: import mlnotify
دوم: کد آموزش مدل رو مثل همیشه بنویسید و اجرا کنید
سوم: کد QR تولید شده توسط پکیج mlnotify رو اسکن کنید.
حالا از آب و هوای خوب لذت ببرید و اجازه بدید تلفن هوشمندتون بهتون بگه چه زمانی تمرین تموم شده

شما هم چک کنید:

https://github.com/aporia-ai/mlnotify

@Ai_Events
🔥1🤩1
Forwarded from Tensorflow(@CVision) (Alireza Akhavan)
این 6 کتاب کاملا رایگان هستند:

1- Deep Learning
(by ian goodfellow et al)
2- Dive into Deep Learning
(by Zhang et al)
3- Machine Learning Engineering
(by Andriy Burkov)
4- Python Data Science Handbook
(by Jake VanderPlas)
5- Probabilistic Machine Learning
(by Kevin Patrick Murphy)
6- Machine Learning Yearning
(by Andrew Ng)

توضیح مختصر کتاب ها:
https://t.iss.one/cvision/2567
@Cvision
🤩1
Forwarded from Tensorflow(@CVision) (Alireza Akhavan)
Tensorflow(@CVision)
این 6 کتاب کاملا رایگان هستند: 1- Deep Learning (by ian goodfellow et al) 2- Dive into Deep Learning (by Zhang et al) 3- Machine Learning Engineering (by Andriy Burkov) 4- Python Data Science Handbook (by Jake VanderPlas) 5- Probabilistic Machine…
https://t.iss.one/cvision/2566

1) A nice book for machine learning and deep learning foundations

2) Good balance between theories and practice(uses multiple tools, NumPy/MXNet, PyTorch, and TensorFlow)

3) A nice overview of machine learning workflows. Very brief and concise.

4) A nice one for getting started with the most important data science tools - IPython, NumPy, Pandas, Matplotlib(and Seaborn), Scikit-Learn

5) Best for theoretical concepts

6) A nice book for learning how to structure machine learning projects and perform error analysis in the right way.
مدل dalle 2 که یه جمله میگیره و تبدیلش می‌کنه به عکس

تست محدود مدل :
https://openai.com/dall-e-2/#demos

مقاله dalle 2 :
https://arxiv.org/abs/2204.06125

مقاله CLIP :
https://arxiv.org/abs/2103.00020

مقاله dalle 1 :
https://arxiv.org/abs/2102.12092

پیاده سازی dalle 2 با pytorch :
https://github.com/lucidrains/DALLE2-pytorch

#openai #dalle #text_to_image
🤩3
This media is not supported in your browser
VIEW IN TELEGRAM
A generalist agent

مقاله جدید deepmind که یه agent ای ارایه دادن که با یک شبکه و وزن های یکسان می‌تونه هم آتاری بازی کنه هم برای تصاویر کپشن تولید کنه هم چت کنه و چند تا کار دیگ 🔥🔥🔥


Abstract

Inspired by progress in large-scale language modelling, we apply a similar approach towards building a single generalist agent beyond the realm of text outputs. The agent, which we refer to as Gato, works as a multi-modal, multi-task, multi-embodiment generalist policy. The same network with the same weights can play Atari, caption images, chat, stack blocks with a real robot arm and much more, deciding based on its context whether to output text, joint torques, button presses, or other tokens. In this report we describe the model and the data, and document the current capabilities of Gato

Link: https://www.deepmind.com/publications/a-generalist-agent
🤯3🔥1
Forwarded from CompArchPhdUI
آنالیز تصاویر فعالیت مغز انسان با استفاده از ابزارهای یادگیری ماشین

سخنران:دکتر محمدیوسف نژاد، پژوهشگر پسا دکترای دانشگاه آلبرتا

این سمینار علاوه بر اطلاعات تخصصی، اطلاعات عمومی خوبی نیز برای دانشجویان دوره کارشناسی خواهد داشت.

زمان: یکشنبه 8 خرداد ساعت 17:30

لینک ثبت نام رایگان:
https://evnd.co/FFxPk
Don't try to reinvent the wheel when approaching a new problem with machine learning or data science. How to carry out literature review effectively in an area of AI that you aren't super familiar with?

1. Start with large-scale review papers.
They provide an updated overview of a field. Example: Two years ago, I wanted to refresh my knowledge of adversarial attacks and defenses. I googled "Adversarial attacks in ML review paper" and came across this review paper: https://lnkd.in/g3m6vdVy (Wiyatno et al.). It summarized recent advances effectively for me. Tip: Google "<your topic> review paper".

2. Call up a friend who knows better about the task at hand, whenever possible. They are probably busy, so just ask them for 5-10 resources (papers, blogs, talks, etc.). Example: In 2017, I was building a trigger word detector with Andrew Ng. It was my first end-to-end exposure to a speech problem. One day in the CS department at Stanford, I ran into Awni Hannun. He's one of the world's expert in speech recognition. I pitched him my problem and in 5 minutes, he was able to provide me with the resources on the most recent models, open-source repositories, hyperparameter tuning tricks, and normalization methods. It probably saved me months of work.

3. Read the introduction of papers. It's typically the section right after the abstract that narrates prior work and links to seminal papers of the field. You can then find these papers and go down the chain (by reading their introductions) to better understand the field you're delving into. Tips: It's not a perfect signal, but you can look for the number of citations of a paper (assuming it has been around for long enough) on Google Scholar as a noisy proxy for trust.

Hope it helps!

https://www.linkedin.com/posts/kiankatan_dont-try-to-reinvent-the-wheel-when-approaching-activity-6935248113704087552-Wzv9?utm_source=linkedin_share&utm_medium=android_app
🔥1
ML & AI resources
Photo
مدل Imagen گوگل ، رقیب جدید dalle2

تست محدود مدل :
https://imagen.research.google/

مقاله Imagen :
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

پیاده سازی Imagen با pytorch :
https://github.com/lucidrains/imagen-pytorch

#google #imagen #text_to_image
🔥2