graphrag
A modular graph-based Retrieval-Augmented Generation (RAG) system
Creator: Microsoft
Stars ⭐️: 13.7k
Forked By: 1.2k
GitHub Repo:
https://github.com/microsoft/graphrag
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Join @deep_learning_proj
A modular graph-based Retrieval-Augmented Generation (RAG) system
Creator: Microsoft
Stars ⭐️: 13.7k
Forked By: 1.2k
GitHub Repo:
https://github.com/microsoft/graphrag
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Join @deep_learning_proj
GitHub
GitHub - microsoft/graphrag: A modular graph-based Retrieval-Augmented Generation (RAG) system
A modular graph-based Retrieval-Augmented Generation (RAG) system - microsoft/graphrag
👍1
firecrawl
Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API.
Creator: Mendable
Stars ⭐️: 12.3k
Forked By: 861
GitHub Repo:
https://github.com/mendableai/firecrawl
✅ https://t.iss.one/deep_learning_proj
Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API.
Creator: Mendable
Stars ⭐️: 12.3k
Forked By: 861
GitHub Repo:
https://github.com/mendableai/firecrawl
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - mendableai/firecrawl: 🔥 Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with…
🔥 Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API. - mendableai/firecrawl
👍2
MiniCPM-V
MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone
Creator: OpenBMB
Stars ⭐️: 11.4k
Forked By: 798
GitHub Repo:
https://github.com/OpenBMB/MiniCPM-V
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Join✅ https://t.iss.one/deep_learning_proj
MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone
Creator: OpenBMB
Stars ⭐️: 11.4k
Forked By: 798
GitHub Repo:
https://github.com/OpenBMB/MiniCPM-V
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Join
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - OpenBMB/MiniCPM-o: MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone
MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone - OpenBMB/MiniCPM-o
LLM based Multi-Agent methods
🖥 Github: https://github.com/AgnostiqHQ/multi-agent-llm
📕 Paper: https://arxiv.org/abs/2409.12618v1
🤗 Dataset: https://paperswithcode.com/dataset/hotpotqa
✅ https://t.iss.one/deep_learning_proj
🤗 Dataset: https://paperswithcode.com/dataset/hotpotqa
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - AgnostiqHQ/multi-agent-llm: Lean implementation of various multi-agent LLM methods, including Iteration of Thought (IoT)
Lean implementation of various multi-agent LLM methods, including Iteration of Thought (IoT) - AgnostiqHQ/multi-agent-llm
Please open Telegram to view this post
VIEW IN TELEGRAM
llama-stack
Model components of the Llama Stack APIs
Creator: Meta Llama
Stars ⭐️: 1.5k
Forked By: 137
https://github.com/meta-llama/llama-stack
✅ https://t.iss.one/deep_learning_proj
Model components of the Llama Stack APIs
Creator: Meta Llama
Stars ⭐️: 1.5k
Forked By: 137
https://github.com/meta-llama/llama-stack
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - meta-llama/llama-stack: Composable building blocks to build Llama Apps
Composable building blocks to build Llama Apps. Contribute to meta-llama/llama-stack development by creating an account on GitHub.
Crawl 4 AI
Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai
✅ https://t.iss.one/deep_learning_proj
Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - unclecode/crawl4ai: 🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper. Don't be shy, join here: https://dis…
🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper. Don't be shy, join here: https://discord.gg/jP8KfhDhyN - unclecode/crawl4ai
🔥 NVIDIA silently release a Llama 3.1 70B fine-tune that outperforms
GPT-4o and Claude Sonnet 3.5
Llama 3.1 Nemotron 70B Instruct a further RLHFed model on
huggingface
https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8
✅ https://t.iss.one/deep_learning_proj
GPT-4o and Claude Sonnet 3.5
Llama 3.1 Nemotron 70B Instruct a further RLHFed model on
huggingface
https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8
Please open Telegram to view this post
VIEW IN TELEGRAM
В семействе 2 модели:
# Clone repo
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2
# Install the repository & accelerate:
pip install -e .
pip install accelerate
# Inference:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)
user_turn_1 = "user_prompt1."
assistant_turn_1 = "assistant_prompt."
user_turn_2 = "user_prompt2."
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))
https://t.iss.one/deep_learning_proj
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
https://t.iss.one/deep_learning_proj
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
LLM-based agents for Software Engineering
"Large Language Model-Based Agents for Software Engineering: A Survey".
https://github.com/FudanSELab/Agent4SE-Paper-List.
https://t.iss.one/deep_learning_proj
"Large Language Model-Based Agents for Software Engineering: A Survey".
https://github.com/FudanSELab/Agent4SE-Paper-List.
https://t.iss.one/deep_learning_proj
Welcome to Ollama's Prompt Engineering Interactive Tutorial
🔗 Github
https://t.iss.one/deep_learning_proj
🔗 Github
https://t.iss.one/deep_learning_proj
👍3
Forwarded from Machine learning books and papers
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machine learning books and papers
NVIDIA BioNeMo2 Framework is a set of tools, libraries, and models for computational drug discovery and design.
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2