graphrag
A modular graph-based Retrieval-Augmented Generation (RAG) system
Creator: Microsoft
Stars ⭐️: 13.7k
Forked By: 1.2k
GitHub Repo:
https://github.com/microsoft/graphrag
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Join @deep_learning_proj
A modular graph-based Retrieval-Augmented Generation (RAG) system
Creator: Microsoft
Stars ⭐️: 13.7k
Forked By: 1.2k
GitHub Repo:
https://github.com/microsoft/graphrag
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Join @deep_learning_proj
GitHub
GitHub - microsoft/graphrag: A modular graph-based Retrieval-Augmented Generation (RAG) system
A modular graph-based Retrieval-Augmented Generation (RAG) system - microsoft/graphrag
👍1
firecrawl
Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API.
Creator: Mendable
Stars ⭐️: 12.3k
Forked By: 861
GitHub Repo:
https://github.com/mendableai/firecrawl
✅ https://t.iss.one/deep_learning_proj
Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API.
Creator: Mendable
Stars ⭐️: 12.3k
Forked By: 861
GitHub Repo:
https://github.com/mendableai/firecrawl
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - mendableai/firecrawl: 🔥 Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with…
🔥 Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API. - mendableai/firecrawl
👍2
MiniCPM-V
MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone
Creator: OpenBMB
Stars ⭐️: 11.4k
Forked By: 798
GitHub Repo:
https://github.com/OpenBMB/MiniCPM-V
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Join✅ https://t.iss.one/deep_learning_proj
MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone
Creator: OpenBMB
Stars ⭐️: 11.4k
Forked By: 798
GitHub Repo:
https://github.com/OpenBMB/MiniCPM-V
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Join
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - OpenBMB/MiniCPM-o: MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone
MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone - OpenBMB/MiniCPM-o
LLM based Multi-Agent methods
🖥 Github: https://github.com/AgnostiqHQ/multi-agent-llm
📕 Paper: https://arxiv.org/abs/2409.12618v1
🤗 Dataset: https://paperswithcode.com/dataset/hotpotqa
✅ https://t.iss.one/deep_learning_proj
🤗 Dataset: https://paperswithcode.com/dataset/hotpotqa
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - AgnostiqHQ/multi-agent-llm: Lean implementation of various multi-agent LLM methods, including Iteration of Thought (IoT)
Lean implementation of various multi-agent LLM methods, including Iteration of Thought (IoT) - AgnostiqHQ/multi-agent-llm
Please open Telegram to view this post
VIEW IN TELEGRAM
llama-stack
Model components of the Llama Stack APIs
Creator: Meta Llama
Stars ⭐️: 1.5k
Forked By: 137
https://github.com/meta-llama/llama-stack
✅ https://t.iss.one/deep_learning_proj
Model components of the Llama Stack APIs
Creator: Meta Llama
Stars ⭐️: 1.5k
Forked By: 137
https://github.com/meta-llama/llama-stack
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - meta-llama/llama-stack: Composable building blocks to build Llama Apps
Composable building blocks to build Llama Apps. Contribute to meta-llama/llama-stack development by creating an account on GitHub.
Crawl 4 AI
Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai
✅ https://t.iss.one/deep_learning_proj
Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - unclecode/crawl4ai: 🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper. Don't be shy, join here: https://dis…
🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper. Don't be shy, join here: https://discord.gg/jP8KfhDhyN - unclecode/crawl4ai
🔥 NVIDIA silently release a Llama 3.1 70B fine-tune that outperforms
GPT-4o and Claude Sonnet 3.5
Llama 3.1 Nemotron 70B Instruct a further RLHFed model on
huggingface
https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8
✅ https://t.iss.one/deep_learning_proj
GPT-4o and Claude Sonnet 3.5
Llama 3.1 Nemotron 70B Instruct a further RLHFed model on
huggingface
https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8
Please open Telegram to view this post
VIEW IN TELEGRAM
В семействе 2 модели:
# Clone repo
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2
# Install the repository & accelerate:
pip install -e .
pip install accelerate
# Inference:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)
user_turn_1 = "user_prompt1."
assistant_turn_1 = "assistant_prompt."
user_turn_2 = "user_prompt2."
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))
https://t.iss.one/deep_learning_proj
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
https://t.iss.one/deep_learning_proj
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
LLM-based agents for Software Engineering
"Large Language Model-Based Agents for Software Engineering: A Survey".
https://github.com/FudanSELab/Agent4SE-Paper-List.
https://t.iss.one/deep_learning_proj
"Large Language Model-Based Agents for Software Engineering: A Survey".
https://github.com/FudanSELab/Agent4SE-Paper-List.
https://t.iss.one/deep_learning_proj
Welcome to Ollama's Prompt Engineering Interactive Tutorial
🔗 Github
https://t.iss.one/deep_learning_proj
🔗 Github
https://t.iss.one/deep_learning_proj
👍3
Forwarded from Machine learning books and papers
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machine learning books and papers
NVIDIA BioNeMo2 Framework is a set of tools, libraries, and models for computational drug discovery and design.
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Forwarded from Machine learning books and papers
Large Language Models Course: Learn by Doing LLM Projects
🖥 Github: https://github.com/peremartra/Large-Language-Model-Notebooks-Course
📕 Paper: https://doi.org/10.31219/osf.io/qgxea
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machine learning books and papers
Foundations of Large Language Models (1).pdf
1.9 MB
Foundations of Large Language Models
📝 Table of Contents:
● Pre-training
● Generative Models
● Prompting
● Alignment
Tong Xiao and Jingbo Zhu
January 17, 2025
📃 Download from arXiv.
@Machine_learn
📝 Table of Contents:
● Pre-training
● Generative Models
● Prompting
● Alignment
Tong Xiao and Jingbo Zhu
January 17, 2025
📃 Download from arXiv.
@Machine_learn
👍1