Data Science Interview Questions with Answers
Whatโs the difference between random forest and gradient boosting?
Random Forests builds each tree independently while Gradient Boosting builds one tree at a time.
Random Forests combine results at the end of the process (by averaging or "majority rules") while Gradient Boosting combines results along the way.
What happens to our linear regression model if we have three columns in our data: x, y, z โโโ and z is a sum of x and y?
We would not be able to perform the regression. Because z is linearly dependent on x and y so when performing the regression would be a singular (not invertible) matrix.
Which regularization techniques do you know?
There are mainly two types of regularization,
L1 Regularization (Lasso regularization) - Adds the sum of absolute values of the coefficients to the cost function.
L2 Regularization (Ridge regularization) - Adds the sum of squares of coefficients to the cost function
Here, Lambda determines the amount of regularization.
How does L2 regularization look like in a linear model?
L2 regularization adds a penalty term to our cost function which is equal to the sum of squares of models coefficients multiplied by a lambda hyperparameter.
This technique makes sure that the coefficients are close to zero and is widely used in cases when we have a lot of features that might correlate with each other.
What are the main parameters in the gradient boosting model?
There are many parameters, but below are a few key defaults.
learning_rate=0.1 (shrinkage).
n_estimators=100 (number of trees).
max_depth=3.
min_samples_split=2.
min_samples_leaf=1.
subsample=1.0.
Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Whatโs the difference between random forest and gradient boosting?
Random Forests builds each tree independently while Gradient Boosting builds one tree at a time.
Random Forests combine results at the end of the process (by averaging or "majority rules") while Gradient Boosting combines results along the way.
What happens to our linear regression model if we have three columns in our data: x, y, z โโโ and z is a sum of x and y?
We would not be able to perform the regression. Because z is linearly dependent on x and y so when performing the regression would be a singular (not invertible) matrix.
Which regularization techniques do you know?
There are mainly two types of regularization,
L1 Regularization (Lasso regularization) - Adds the sum of absolute values of the coefficients to the cost function.
L2 Regularization (Ridge regularization) - Adds the sum of squares of coefficients to the cost function
Here, Lambda determines the amount of regularization.
How does L2 regularization look like in a linear model?
L2 regularization adds a penalty term to our cost function which is equal to the sum of squares of models coefficients multiplied by a lambda hyperparameter.
This technique makes sure that the coefficients are close to zero and is widely used in cases when we have a lot of features that might correlate with each other.
What are the main parameters in the gradient boosting model?
There are many parameters, but below are a few key defaults.
learning_rate=0.1 (shrinkage).
n_estimators=100 (number of trees).
max_depth=3.
min_samples_split=2.
min_samples_leaf=1.
subsample=1.0.
Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
Forwarded from Python Projects & Resources
๐๐๐ ๐
๐๐๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง ๐๐จ๐ฎ๐ซ๐ฌ๐๐ฌ๐
๐ Dive into the world of Data Analytics with these 6 free courses by IBM!
Gain practical knowledge and stand out in your career with tools designed for real-world applications.
All courses come with expert guidance and are free to access!๐
๐๐ข๐ง๐ค ๐:-
https://bit.ly/4iXOmmb
Enroll For FREE & Get Certified ๐
๐ Dive into the world of Data Analytics with these 6 free courses by IBM!
Gain practical knowledge and stand out in your career with tools designed for real-world applications.
All courses come with expert guidance and are free to access!๐
๐๐ข๐ง๐ค ๐:-
https://bit.ly/4iXOmmb
Enroll For FREE & Get Certified ๐
10 Data Analyst Project Ideas to Boost Your Portfolio
โ Sales Dashboard (Power BI/Tableau) โ Analyze revenue, region-wise trends, and KPIs
โ HR Analytics โ Employee attrition, retention trends using Excel/SQL/Power BI
โ Customer Segmentation (SQL + Excel) โ Analyze buying patterns and group customers
โ Survey Data Analysis โ Clean, visualize, and interpret survey insights
โ E-commerce Data Analysis โ Funnel analysis, product trends, and revenue mapping
โ Superstore Sales Analysis โ Use public datasets to show time series and cohort trends
โ Marketing Campaign Effectiveness โ SQL + A/B test analysis with statistical methods
โ Financial Dashboard โ Visualize profit, loss, and KPIs using Power BI
โ YouTube/Instagram Analytics โ Use social media data to find audience behavior insights
โ SQL Reporting Automation โ Build and schedule automated SQL reports and visualizations
React โค๏ธ for more
โ Sales Dashboard (Power BI/Tableau) โ Analyze revenue, region-wise trends, and KPIs
โ HR Analytics โ Employee attrition, retention trends using Excel/SQL/Power BI
โ Customer Segmentation (SQL + Excel) โ Analyze buying patterns and group customers
โ Survey Data Analysis โ Clean, visualize, and interpret survey insights
โ E-commerce Data Analysis โ Funnel analysis, product trends, and revenue mapping
โ Superstore Sales Analysis โ Use public datasets to show time series and cohort trends
โ Marketing Campaign Effectiveness โ SQL + A/B test analysis with statistical methods
โ Financial Dashboard โ Visualize profit, loss, and KPIs using Power BI
โ YouTube/Instagram Analytics โ Use social media data to find audience behavior insights
โ SQL Reporting Automation โ Build and schedule automated SQL reports and visualizations
React โค๏ธ for more
โค1
This media is not supported in your browser
VIEW IN TELEGRAM
MEE6 in Telegram ๐ฅ
๐ค T22 - The best-in-class telegram group bot!
Stop juggling bots โT22 is MissRose x GroupHelp x Safeguard with a mini-app dashboard!
๐ Verification & Captcha
๐ก Advanced Moderation Tools
๐ Leveling System
๐ฌ Smart Welcome Flows
๐ฆ Twitter Raids
๐ง Mini-App Dashboard
๐ฆ Miss Rose Config Importer
Discover T22 ๐
By MEE6 Creator
๐ค T22 - The best-in-class telegram group bot!
Stop juggling bots โT22 is MissRose x GroupHelp x Safeguard with a mini-app dashboard!
๐ Verification & Captcha
๐ก Advanced Moderation Tools
๐ Leveling System
๐ฌ Smart Welcome Flows
๐ฆ Twitter Raids
๐ง Mini-App Dashboard
๐ฆ Miss Rose Config Importer
Discover T22 ๐
By MEE6 Creator
โค1
What is the difference between data scientist, data engineer, data analyst and business intelligence?
๐ง๐ฌ Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers โWhy is this happening?โ and โWhat will happen next?โ
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month
๐ ๏ธ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse
๐ Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers โWhat happened?โ or โWhatโs going on right now?โ
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region
๐ Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department
๐งฉ Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers
๐ฏ In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
๐ง๐ฌ Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers โWhy is this happening?โ and โWhat will happen next?โ
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month
๐ ๏ธ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse
๐ Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers โWhat happened?โ or โWhatโs going on right now?โ
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region
๐ Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department
๐งฉ Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers
๐ฏ In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
โค2
๐ฐ ๐๐ถ๐ด๐ต-๐๐บ๐ฝ๐ฎ๐ฐ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ฎ๐๐ป๐ฐ๐ต ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kC18XE
These courses help you gain hands-on experience โ exactly what top MNCs look for!โ ๏ธ
These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kC18XE
These courses help you gain hands-on experience โ exactly what top MNCs look for!โ ๏ธ
โค1
7 Must-Have Tools for Data Analysts in 2025:
โ SQL โ Still the #1 skill for querying and managing structured data
โ Excel / Google Sheets โ Quick analysis, pivot tables, and essential calculations
โ Python (Pandas, NumPy) โ For deep data manipulation and automation
โ Power BI โ Transform data into interactive dashboards
โ Tableau โ Visualize data patterns and trends with ease
โ Jupyter Notebook โ Document, code, and visualize all in one place
โ Looker Studio โ A free and sleek way to create shareable reports with live data.
Perfect blend of code, visuals, and storytelling.
React with โค๏ธ for free tutorials on each tool
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โ SQL โ Still the #1 skill for querying and managing structured data
โ Excel / Google Sheets โ Quick analysis, pivot tables, and essential calculations
โ Python (Pandas, NumPy) โ For deep data manipulation and automation
โ Power BI โ Transform data into interactive dashboards
โ Tableau โ Visualize data patterns and trends with ease
โ Jupyter Notebook โ Document, code, and visualize all in one place
โ Looker Studio โ A free and sleek way to create shareable reports with live data.
Perfect blend of code, visuals, and storytelling.
React with โค๏ธ for free tutorials on each tool
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค3
Forwarded from Python Projects & Resources
๐ญ๐ฌ๐ฌ๐ฌ+ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฏ๐ ๐๐ป๐ณ๐ผ๐๐๐ โ ๐๐ฒ๐ฎ๐ฟ๐ป, ๐๐ฟ๐ผ๐, ๐ฆ๐๐ฐ๐ฐ๐ฒ๐ฒ๐ฑ!๐
๐ Looking to upgrade your skills without spending a rupee?๐ฐ
Hereโs your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ all absolutely FREE on Infosys Springboard!๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43UcmQ7
Save this blog, sign up, and start your upskilling journey today!โ ๏ธ
๐ Looking to upgrade your skills without spending a rupee?๐ฐ
Hereโs your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ all absolutely FREE on Infosys Springboard!๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43UcmQ7
Save this blog, sign up, and start your upskilling journey today!โ ๏ธ
โค1
Important Python concepts that every beginner should know
1. Variables & Data Types ๐ง
Variables are like boxes where you store stuff.
Python automatically knows the type of data you're working with!
name = "Alice" # String
age = 25 # Integer
height = 5.6 # Float
is_student = True # Boolean
2. Conditional Statements ๐
Want your program to make decisions?
Use if, elif, and else!
if age > 18:
print("You're an adult!")
else:
print("You're a kid!")
3. Loops ๐
Repeat tasks without writing them 100 times!
For loop โ Loop over a sequence
While loop โ Loop until a condition is false
for i in range(5):
print(i) # 0 to 4
count = 0
while count < 3:
print("Hello")
count += 1
4. Functions โ๏ธ
Reusable blocks of code. Keeps your program clean and DRY (Don't Repeat Yourself)!
def greet(name):
print(f"Hello, {name}!")
greet("Bob")
5. Lists, Tuples, Dictionaries, Sets ๐ฆ
List: Ordered, changeable
Tuple: Ordered, unchangeable
Dict: Key-value pairs
Set: Unordered, unique items
my_list = [1, 2, 3]
my_tuple = (4, 5, 6)
my_dict = {"name": "Alice", "age": 25}
my_set = {1, 2, 3}
6. String Manipulation โ๏ธ
Work with text like a pro!
text = "Python is awesome"
print(text.upper()) # PYTHON IS AWESOME
print(text.replace("awesome", "cool")) # Python is cool
7. Input from User โจ๏ธ
Make your programs interactive!
name = input("Enter your name: ")
print("Hello " + name)
8. Error Handling โ ๏ธ
Catch mistakes before they crash your program.
try:
x = 1 / 0
except ZeroDivisionError:
print("You can't divide by zero!")
9. File Handling ๐
Read or write files using Python.
with open("notes.txt", "r") as file:
content = file.read()
print(content)
10. Object-Oriented Programming (OOP) ๐งฑ
Python lets you model real-world things using classes and objects.
class Dog:
def init(self, name):
self.name = name
def bark(self):
print(f"{self.name} says woof!")
my_dog = Dog("Buddy")
my_dog.bark()
React with โค๏ธ if you want me to cover each Python concept in detail.
For all resources and cheat sheets, check out my Telegram channel: https://t.iss.one/pythonproz
Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a
Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Hope it helps :)
1. Variables & Data Types ๐ง
Variables are like boxes where you store stuff.
Python automatically knows the type of data you're working with!
name = "Alice" # String
age = 25 # Integer
height = 5.6 # Float
is_student = True # Boolean
2. Conditional Statements ๐
Want your program to make decisions?
Use if, elif, and else!
if age > 18:
print("You're an adult!")
else:
print("You're a kid!")
3. Loops ๐
Repeat tasks without writing them 100 times!
For loop โ Loop over a sequence
While loop โ Loop until a condition is false
for i in range(5):
print(i) # 0 to 4
count = 0
while count < 3:
print("Hello")
count += 1
4. Functions โ๏ธ
Reusable blocks of code. Keeps your program clean and DRY (Don't Repeat Yourself)!
def greet(name):
print(f"Hello, {name}!")
greet("Bob")
5. Lists, Tuples, Dictionaries, Sets ๐ฆ
List: Ordered, changeable
Tuple: Ordered, unchangeable
Dict: Key-value pairs
Set: Unordered, unique items
my_list = [1, 2, 3]
my_tuple = (4, 5, 6)
my_dict = {"name": "Alice", "age": 25}
my_set = {1, 2, 3}
6. String Manipulation โ๏ธ
Work with text like a pro!
text = "Python is awesome"
print(text.upper()) # PYTHON IS AWESOME
print(text.replace("awesome", "cool")) # Python is cool
7. Input from User โจ๏ธ
Make your programs interactive!
name = input("Enter your name: ")
print("Hello " + name)
8. Error Handling โ ๏ธ
Catch mistakes before they crash your program.
try:
x = 1 / 0
except ZeroDivisionError:
print("You can't divide by zero!")
9. File Handling ๐
Read or write files using Python.
with open("notes.txt", "r") as file:
content = file.read()
print(content)
10. Object-Oriented Programming (OOP) ๐งฑ
Python lets you model real-world things using classes and objects.
class Dog:
def init(self, name):
self.name = name
def bark(self):
print(f"{self.name} says woof!")
my_dog = Dog("Buddy")
my_dog.bark()
React with โค๏ธ if you want me to cover each Python concept in detail.
For all resources and cheat sheets, check out my Telegram channel: https://t.iss.one/pythonproz
Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a
Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Hope it helps :)
โค1๐ฅ1
Forwarded from Python Projects & Resources
๐๐ฟ๐ฒ๐ฒ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ: ๐ง๐ต๐ฒ ๐๐ฒ๐๐ ๐ฆ๐๐ฎ๐ฟ๐๐ถ๐ป๐ด ๐ฃ๐ผ๐ถ๐ป๐ ๐ณ๐ผ๐ฟ ๐ง๐ฒ๐ฐ๐ต & ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐๐
๐ Want to break into tech or data analytics but donโt know how to start?๐โจ๏ธ
Python is the #1 most in-demand programming language, and Scalerโs free Python for Beginners course is a game-changer for absolute beginners๐โ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45TroYX
No coding background needed!โ ๏ธ
๐ Want to break into tech or data analytics but donโt know how to start?๐โจ๏ธ
Python is the #1 most in-demand programming language, and Scalerโs free Python for Beginners course is a game-changer for absolute beginners๐โ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45TroYX
No coding background needed!โ ๏ธ
Advanced Skills to Elevate Your Data Analytics Career
1๏ธโฃ SQL Optimization & Performance Tuning
๐ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.
2๏ธโฃ Machine Learning Basics
๐ค Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.
3๏ธโฃ Big Data Technologies
๐๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.
4๏ธโฃ Data Engineering Skills
โ๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.
5๏ธโฃ Advanced Python for Analytics
๐ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.
6๏ธโฃ A/B Testing & Experimentation
๐ฏ Design and analyze controlled experiments to drive data-driven decision-making.
7๏ธโฃ Dashboard Design & UX
๐จ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.
8๏ธโฃ Cloud Data Analytics
โ๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.
9๏ธโฃ Domain Expertise
๐ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.
๐ Soft Skills & Leadership
๐ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.
Hope it helps :)
#dataanalytics
1๏ธโฃ SQL Optimization & Performance Tuning
๐ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.
2๏ธโฃ Machine Learning Basics
๐ค Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.
3๏ธโฃ Big Data Technologies
๐๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.
4๏ธโฃ Data Engineering Skills
โ๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.
5๏ธโฃ Advanced Python for Analytics
๐ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.
6๏ธโฃ A/B Testing & Experimentation
๐ฏ Design and analyze controlled experiments to drive data-driven decision-making.
7๏ธโฃ Dashboard Design & UX
๐จ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.
8๏ธโฃ Cloud Data Analytics
โ๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.
9๏ธโฃ Domain Expertise
๐ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.
๐ Soft Skills & Leadership
๐ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.
Hope it helps :)
#dataanalytics
โค1
๐ญ๐ฌ๐ฌ% ๐๐ฟ๐ฒ๐ฒ ๐ง๐ฒ๐ฐ๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4e76jMX
Enroll For FREE & Get Certified!โ ๏ธ
From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4e76jMX
Enroll For FREE & Get Certified!โ ๏ธ
NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
134.6 KB
Cheatsheet on Numpy and pandas for easy viewing ๐
ibm_machine_learning_for_dummies.pdf
1.8 MB
Short Machine Learning guide on industry applications and how itโs used to resolve problems ๐ก
โค2
Forwarded from Python Projects & Resources
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ณ๐ฟ๐ผ๐บ ๐ฆ๐ฐ๐ฟ๐ฎ๐๐ฐ๐ต ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
๐ฏ Want to break into Machine Learning but donโt know where to start?โจ๏ธ
You donโt need a fancy degree or expensive course to begin your ML journey๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jRouYb
This list is for anyone ready to start learning ML from scratchโ ๏ธ
๐ฏ Want to break into Machine Learning but donโt know where to start?โจ๏ธ
You donโt need a fancy degree or expensive course to begin your ML journey๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jRouYb
This list is for anyone ready to start learning ML from scratchโ ๏ธ
9 ChatGPT-4o prompt engineering frameworks:
1. A.P.E
A | Action: Define the job or activity.
P | Purpose: Discuss the goal.
E | Expectation: State the desired outcome.
2. T.A.G
T | Task: Define the task.
A | Action: Describe the steps.
G | Goal: Explain the end goal.
3. E.R.A
E | Expectation: Describe the desired result.
R | Role: Specify ChatGPTโs role.
A | Action: Specify needed actions.
4. R.A.C.E
R | Role: Specify ChatGPTโs role.
A | Action: Detail the necessary action.
C | Context: Provide situational details.
E | Expectation: Describe the expected outcome.
5. R.I.S.E
R | Request: Specify ChatGPTโs role.
I | Input: Provide necessary information.
S | Scenario: Detail the steps.
E | Expectation: Describe the result.
6. C.A.R.E
C | Context: Set the stage.
A | Action: Describe the task.
R | Result: Describe the outcome.
E | Example: Give an illustration.
7. C.O.A.S.T
C | Context: Set the stage.
O | Objective: Describe the goal.
A | Actions: Explain needed steps.
S | Steps: Describe the situation.
T | Task: Outline the task.
8. T.R.A.C.E
T | Task: Define the task.
R | Role: Describe the need.
A | Action: State the required action.
C | Context: Provide the context or situation.
E | Expectation: Illustrate with an example.
9. R.O.S.E.S
R | Role: Specify ChatGPTโs role.
O | Objective: State the goal or aim.
S | Steps: Describe the situation.
E | Expected Solution: Define the outcome.
S | Scenario: Ask for actions needed to reach the solution.
React with โค๏ธ for more
Everything about ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
1. A.P.E
A | Action: Define the job or activity.
P | Purpose: Discuss the goal.
E | Expectation: State the desired outcome.
2. T.A.G
T | Task: Define the task.
A | Action: Describe the steps.
G | Goal: Explain the end goal.
3. E.R.A
E | Expectation: Describe the desired result.
R | Role: Specify ChatGPTโs role.
A | Action: Specify needed actions.
4. R.A.C.E
R | Role: Specify ChatGPTโs role.
A | Action: Detail the necessary action.
C | Context: Provide situational details.
E | Expectation: Describe the expected outcome.
5. R.I.S.E
R | Request: Specify ChatGPTโs role.
I | Input: Provide necessary information.
S | Scenario: Detail the steps.
E | Expectation: Describe the result.
6. C.A.R.E
C | Context: Set the stage.
A | Action: Describe the task.
R | Result: Describe the outcome.
E | Example: Give an illustration.
7. C.O.A.S.T
C | Context: Set the stage.
O | Objective: Describe the goal.
A | Actions: Explain needed steps.
S | Steps: Describe the situation.
T | Task: Outline the task.
8. T.R.A.C.E
T | Task: Define the task.
R | Role: Describe the need.
A | Action: State the required action.
C | Context: Provide the context or situation.
E | Expectation: Illustrate with an example.
9. R.O.S.E.S
R | Role: Specify ChatGPTโs role.
O | Objective: State the goal or aim.
S | Steps: Describe the situation.
E | Expected Solution: Define the outcome.
S | Scenario: Ask for actions needed to reach the solution.
React with โค๏ธ for more
Everything about ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
โค4
Forwarded from Python Projects & Resources
๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐ณ๐ผ๐ฟ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐: ๐ฑ ๐ฆ๐๐ฒ๐ฝ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ผ๐๐ฟ๐ป๐ฒ๐๐
Want to break into Data Science but donโt know where to begin?๐จโ๐ป๐
Youโre not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.๐ซ๐ฒ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SU5FJ0
No prior experience needed!โ ๏ธ
Want to break into Data Science but donโt know where to begin?๐จโ๐ป๐
Youโre not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.๐ซ๐ฒ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SU5FJ0
No prior experience needed!โ ๏ธ
Breaking into Data Science doesnโt need to be complicated.
If youโre just starting out,
Hereโs how to simplify your approach:
Avoid:
๐ซ Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
๐ซ Spending months on theoretical concepts without hands-on practice.
๐ซ Overloading your resume with keywords instead of impactful projects.
๐ซ Believing you need a Ph.D. to break into the field.
Instead:
โ Start with Python or Rโfocus on mastering one language first.
โ Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
โ Dive into a simple machine learning model (like linear regression) to understand the basics.
โ Solve real-world problems with open datasets and share them in a portfolio.
โ Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content ๐๐
Hope this helps you ๐
#ai #datascience
If youโre just starting out,
Hereโs how to simplify your approach:
Avoid:
๐ซ Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
๐ซ Spending months on theoretical concepts without hands-on practice.
๐ซ Overloading your resume with keywords instead of impactful projects.
๐ซ Believing you need a Ph.D. to break into the field.
Instead:
โ Start with Python or Rโfocus on mastering one language first.
โ Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
โ Dive into a simple machine learning model (like linear regression) to understand the basics.
โ Solve real-world problems with open datasets and share them in a portfolio.
โ Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content ๐๐
Hope this helps you ๐
#ai #datascience
โค4
Forwarded from Python Projects & Resources
๐ง๐ผ๐ฝ ๐ง๐ฒ๐ฐ๐ต ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐ - ๐๐ฟ๐ฎ๐ฐ๐ธ ๐ฌ๐ผ๐๐ฟ ๐ก๐ฒ๐
๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐
๐ฆ๐ค๐:- https://pdlink.in/3SMHxaZ
๐ฃ๐๐๐ต๐ผ๐ป :- https://pdlink.in/3FJhizk
๐๐ฎ๐๐ฎ :- https://pdlink.in/4dWkAMf
๐๐ฆ๐ :- https://pdlink.in/3FsDA8j
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ :- https://pdlink.in/4jLOJ2a
๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ :- https://pdlink.in/4dFem3o
๐๐ผ๐ฑ๐ถ๐ป๐ด :- https://pdlink.in/3F00oMw
Get Your Dream Tech Job In Your Dream Company๐ซ
๐ฆ๐ค๐:- https://pdlink.in/3SMHxaZ
๐ฃ๐๐๐ต๐ผ๐ป :- https://pdlink.in/3FJhizk
๐๐ฎ๐๐ฎ :- https://pdlink.in/4dWkAMf
๐๐ฆ๐ :- https://pdlink.in/3FsDA8j
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ :- https://pdlink.in/4jLOJ2a
๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ :- https://pdlink.in/4dFem3o
๐๐ผ๐ฑ๐ถ๐ป๐ด :- https://pdlink.in/3F00oMw
Get Your Dream Tech Job In Your Dream Company๐ซ
โค1
Effective Communication of Data Insights (Very Important Skill for Data Analysts)
Know Your Audience:
Tip: Tailor your presentation based on the technical expertise and interests of your audience.
Consideration: Avoid jargon when presenting to non-technical stakeholders.
Focus on Key Insights:
Tip: Highlight the most relevant findings and their impact on business goals.
Consideration: Avoid overwhelming your audience with excessive details or raw data.
Use Visuals to Support Your Message:
Tip: Leverage charts, graphs, and dashboards to make your insights more digestible.
Consideration: Ensure visuals are simple and easy to interpret.
Tell a Story:
Tip: Present data in a narrative form to make it engaging and memorable.
Consideration: Use the context of the data to tell a clear story with a beginning, middle, and end.
Provide Actionable Recommendations:
Tip: Focus on practical steps or decisions that can be made based on the data.
Consideration: Offer clear, actionable insights that drive business outcomes.
Be Transparent About Limitations:
Tip: Acknowledge any data limitations or assumptions in your analysis.
Consideration: Being transparent builds trust and shows a thorough understanding of the data.
Encourage Questions:
Tip: Allow for questions and discussions to clarify any doubts.
Consideration: Engage with your audience to ensure full understanding of the insights.
You can find more communication tips here: https://t.iss.one/englishlearnerspro
I have curated Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Know Your Audience:
Tip: Tailor your presentation based on the technical expertise and interests of your audience.
Consideration: Avoid jargon when presenting to non-technical stakeholders.
Focus on Key Insights:
Tip: Highlight the most relevant findings and their impact on business goals.
Consideration: Avoid overwhelming your audience with excessive details or raw data.
Use Visuals to Support Your Message:
Tip: Leverage charts, graphs, and dashboards to make your insights more digestible.
Consideration: Ensure visuals are simple and easy to interpret.
Tell a Story:
Tip: Present data in a narrative form to make it engaging and memorable.
Consideration: Use the context of the data to tell a clear story with a beginning, middle, and end.
Provide Actionable Recommendations:
Tip: Focus on practical steps or decisions that can be made based on the data.
Consideration: Offer clear, actionable insights that drive business outcomes.
Be Transparent About Limitations:
Tip: Acknowledge any data limitations or assumptions in your analysis.
Consideration: Being transparent builds trust and shows a thorough understanding of the data.
Encourage Questions:
Tip: Allow for questions and discussions to clarify any doubts.
Consideration: Engage with your audience to ensure full understanding of the insights.
You can find more communication tips here: https://t.iss.one/englishlearnerspro
I have curated Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค1