Data Analytics & AI | SQL Interviews | Power BI Resources
25.3K subscribers
307 photos
2 videos
151 files
319 links
๐Ÿ”“Explore the fascinating world of Data Analytics & Artificial Intelligence

๐Ÿ’ป Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
The Only SQL You Actually Need For Your First Job (Data Analytics)

The Learning Trap: What Most Beginners Fall Into

When starting out, it's common to feel like you need to master every possible SQL concept. You binge YouTube videos, tutorials, and courses, yet still feel lost in interviews or when given a real dataset.

Common traps:

- Complex subqueries

- Advanced CTEs

- Recursive queries

- 100+ tutorials watched

- 0 practical experience


Reality Check: What You'll Actually Use 75% of the Time

Most data analytics roles (especially entry-level) require clarity, speed, and confidence with core SQL operations. Hereโ€™s what covers most daily work:

1. SELECT, FROM, WHERE โ€” The Foundation

SELECT name, age
FROM employees
WHERE department = 'Finance';

This is how almost every query begins. Whether exploring a dataset or building a dashboard, these are always in use.

2. JOINs โ€” Combining Data From Multiple Tables

SELECT e.name, d.department_name
FROM employees e
JOIN departments d ON e.department_id = d.id;

Youโ€™ll often join tables like employee data with department, customer orders with payments, etc.

3. GROUP BY โ€” Summarizing Data

SELECT department, COUNT(*) AS employee_count
FROM employees
GROUP BY department;

Used to get summaries by categories like sales per region or users by plan.

4. ORDER BY โ€” Sorting Results

SELECT name, salary
FROM employees
ORDER BY salary DESC;

Helps sort output for dashboards or reports.

5. Aggregations โ€” Simple But Powerful

Common functions: COUNT(), SUM(), AVG(), MIN(), MAX()

SELECT AVG(salary)
FROM employees
WHERE department = 'IT';

Gives quick insights like average deal size or total revenue.

6. ROW_NUMBER() โ€” Adding Row Logic

SELECT *
FROM (
SELECT *, ROW_NUMBER() OVER(PARTITION BY customer_id ORDER BY order_date DESC) as rn
FROM orders
) sub
WHERE rn = 1;

Used for deduplication, rankings, or selecting the latest record per group.

Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

React โค๏ธ for more
โค3
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—”๐—œ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

๐ŸŽ“ You donโ€™t need to break the bank to break into AI!๐Ÿชฉ

If youโ€™ve been searching for beginner-friendly, certified AI learningโ€”Google Cloud has you covered๐Ÿค๐Ÿ‘จโ€๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3SZQRIU

๐Ÿ“All taught by industry-leading instructorsโœ…๏ธ
Many people pay too much to learn Data Science, but my mission is to break down barriers. I have shared complete learning series to learn Data Science algorithms from scratch.

Here are the links to the Data Science series ๐Ÿ‘‡๐Ÿ‘‡

Complete Data Science Algorithms: https://t.iss.one/datasciencefun/1708

Part-1: https://t.iss.one/datasciencefun/1710

Part-2: https://t.iss.one/datasciencefun/1716

Part-3: https://t.iss.one/datasciencefun/1718

Part-4: https://t.iss.one/datasciencefun/1719

Part-5: https://t.iss.one/datasciencefun/1723

Part-6: https://t.iss.one/datasciencefun/1724

Part-7: https://t.iss.one/datasciencefun/1725

Part-8: https://t.iss.one/datasciencefun/1726

Part-9: https://t.iss.one/datasciencefun/1729

Part-10: https://t.iss.one/datasciencefun/1730

Part-11: https://t.iss.one/datasciencefun/1733

Part-12:
https://t.iss.one/datasciencefun/1734

Part-13: https://t.iss.one/datasciencefun/1739

Part-14: https://t.iss.one/datasciencefun/1742

Part-15: https://t.iss.one/datasciencefun/1748

Part-16: https://t.iss.one/datasciencefun/1750

Part-17: https://t.iss.one/datasciencefun/1753

Part-18: https://t.iss.one/datasciencefun/1754

Part-19: https://t.iss.one/datasciencefun/1759

Part-20: https://t.iss.one/datasciencefun/1765

Part-21: https://t.iss.one/datasciencefun/1768

I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.

But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.

Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.

Hope it helps :)
โค3๐Ÿ‘1
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ž๐—ฎ๐—ด๐—ด๐—น๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—๐˜‚๐—บ๐—ฝ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Want to break into Data Science but not sure where to start?๐Ÿš€

These free Kaggle micro-courses are the perfect launchpad โ€” beginner-friendly, self-paced, and yes, they come with certifications!๐Ÿ‘จโ€๐ŸŽ“๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4l164FN

No subscription. No hidden fees. Just pure learning from a trusted platformโœ…๏ธ
Forwarded from Artificial Intelligence
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ + ๐—Ÿ๐—ถ๐—ป๐—ธ๐—ฒ๐—ฑ๐—œ๐—ป ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—˜๐˜€๐˜€๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ๐Ÿ˜

Ready to upgrade your career without spending a dime?โœจ๏ธ

From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!๐Ÿ“ฒ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/469RCGK

Designed to equip you with in-demand skills and industry-recognised certifications๐Ÿ“œโœ…๏ธ
โค1
80% of people who start learning data analytics never land a job.

Not because they lack skill

but because they get stuck in "preparation mode."

I was almost one of them.

I spent months:
-Taking courses.
-Watching YouTube tutorials.
-Practicing SQL and Power BI.

But when it came time to publish a project or apply for jobs
I hesitated.

โ€œI need to learn more first.โ€
โ€œMy portfolio isnโ€™t ready.โ€
โ€œMaybe next month.โ€

Sound familiar?

You donโ€™t need more knowledge
you need more execution.

Data analysts who build & share projects are 3X more likely to get hired.

The best analysts arenโ€™t the smartest.
Theyโ€™re the ones who take action.

-They publish dashboards, even if they arenโ€™t perfect.
-They post case studies, even when they feel like imposters.
-They apply for jobs before they "feel ready"

Stop overthinking.

Pick a dataset, build something, and share it today.

One messy project is worth more than 100 courses you never use.
โค5๐Ÿ‘1
Forwarded from Artificial Intelligence
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ & ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

Want to break into Data Analytics or Data Scienceโ€”but donโ€™t know where to begin?๐Ÿš€

Harvard University offers 5 completely free online courses that will build your foundation in Python, statistics, machine learning, and data visualization โ€” no prior experience or degree required!๐Ÿ‘จโ€๐ŸŽ“๐Ÿ’ซ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3T3ZhPu

These Harvard-certified courses will boost your resume, LinkedIn profile, and skillsโœ…๏ธ
โค1
Beyond Data Analytics: Expanding Your Career Horizons

Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:

1๏ธโƒฃ Data Science & AI Specialist ๐Ÿค–

Dive deeper into machine learning, deep learning, and AI-powered analytics.

Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.

Work on predictive modeling, NLP, and AI automation.


2๏ธโƒฃ Data Engineering ๐Ÿ—๏ธ

Shift towards building scalable data infrastructure.

Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.

Learn Docker, Kubernetes, and Airflow for workflow automation.


3๏ธโƒฃ Business Intelligence & Data Strategy ๐Ÿ“Š

Transition into high-level decision-making roles.

Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.

Lead data-driven transformation projects in organizations.


4๏ธโƒฃ Product Analytics & Growth Strategy ๐Ÿ“ˆ

Work closely with product managers to optimize user experience and engagement.

Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.

Learn Mixpanel, Amplitude, and Google Analytics.


5๏ธโƒฃ Data Governance & Privacy Expert ๐Ÿ”

Specialize in data compliance, security, and ethical AI.

Learn about GDPR, CCPA, and industry regulations.

Work on data quality, lineage, and metadata management.


6๏ธโƒฃ AI-Powered Automation & No-Code Analytics ๐Ÿš€

Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.

Automate repetitive tasks and create self-service analytics solutions for businesses.


7๏ธโƒฃ Freelancing & Consulting ๐Ÿ’ผ

Offer data analytics services as an independent consultant.

Build a personal brand through LinkedIn, Medium, or YouTube.

Monetize your expertise via online courses, coaching, or workshops.


8๏ธโƒฃ Transitioning to Leadership Roles

Become a Data Science Manager, Head of Analytics, or Chief Data Officer.

Focus on mentoring teams, driving data strategy, and influencing business decisions.

Develop stakeholder management, communication, and leadership skills.


Mastering data analytics opens up multiple career pathwaysโ€”whether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! ๐Ÿš€

#dataanalytics
โค3
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€ ๐—ฏ๐˜† ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ, ๐—œ๐—•๐— , ๐—จ๐—ฑ๐—ฎ๐—ฐ๐—ถ๐˜๐˜† & ๐— ๐—ผ๐—ฟ๐—ฒ๐Ÿ˜

Looking to learn Python from scratchโ€”without spending a rupee? ๐Ÿ’ป

Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐Ÿ”ฅ๐Ÿ‘จโ€๐ŸŽ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3HNeyBQ

Kickstart your careerโœ…๏ธ
โค1
10 AI Trends to Watch in 2025

โœ… Open-Source LLM Boom โ€“ Models like Mistral, LLaMA, and Mixtral rivaling proprietary giants
โœ… Multi-Agent AI Systems โ€“ AIs collaborating with each other to complete complex tasks
โœ… Edge AI โ€“ Smarter AI running directly on mobile & IoT devices, no cloud needed
โœ… AI Legislation & Ethics โ€“ Governments setting global AI rules and ethical frameworks
โœ… Personalized AI Companions โ€“ Customizable chatbots for productivity, learning, and therapy
โœ… AI in Robotics โ€“ Real-world actions powered by vision-language models
โœ… AI-Powered Search โ€“ Tools like Perplexity and You.com reshaping how we explore the web
โœ… Generative Video & 3D โ€“ Text-to-video and image-to-3D tools going mainstream
โœ… AI-Native Programming โ€“ Entire codebases generated and managed by AI agents
โœ… Sustainable AI โ€“ Focus on reducing model training energy & creating green AI systems
React if you're following any of these trends closely!

#genai
โค1
Forwarded from Artificial Intelligence
๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ & ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—ช๐—ถ๐—น๐—น ๐—”๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐—จ๐—ฝ๐—ด๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ๐Ÿ˜

I failed my first data interview โ€” and hereโ€™s why:โฌ‡๏ธ

โŒ No structured learning
โŒ No real projects
โŒ Just random YouTube tutorials and half-read blogs

If this sounds like you, donโ€™t repeat my mistakeโœจ๏ธ
Recruiters want proof of skills, not just buzzwords๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ka1ZOl

All The Best ๐ŸŽŠ
โค2
The best doesn't come from working more.

It comes from working smarter.

The most common mistakes people make,
With practical tips to avoid each:

1) Working late every night.

โ€ข Prioritize quality time with loved ones.

Understand that long hours won't be remembered as fondly as time spent with family and friends.

2) Believing more hours mean more productivity.

โ€ข Focus on efficiency.

Complete tasks in less time to free up hours for personal activities and rest.

3) Ignoring the need for breaks.

โ€ข Take regular breaks to rejuvenate your mind.

Creativity and productivity suffer without proper rest.

4) Sacrificing personal well-being.

โ€ข Maintain a healthy work-life balance.

Ensure you don't compromise your health or relationships for work.

5) Feeling pressured to constantly produce.

โ€ข Quality over quantity.

6) Neglecting hobbies and interests.

โ€ข Engage in activities you love outside of work.

This helps to keep your mind fresh and inspired.

7) Failing to set boundaries.

โ€ข Set clear work hours and stick to them.

This helps to prevent overworking and ensures you have time for yourself.

8) Not delegating tasks.

โ€ข Delegate when possible.

Sharing the workload can enhance productivity and give you more free time.

9) Overlooking the importance of sleep.

โ€ข Prioritize sleep for better performance.

A well-rested mind is more creative and effective.

10) Underestimating the impact of overworking.

โ€ข Recognize the long-term effects.

๐Ÿ‘‰WhatsApp Channel: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

๐Ÿ‘‰ Biggest Data Analytics Telegram Channel: https://t.iss.one/sqlspecialist

Like for more โค๏ธ

All the best ๐Ÿ‘ ๐Ÿ‘
โค1
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ฎ๐—ป ๐—•๐—ฒ ๐—™๐˜‚๐—ป! ๐Ÿฐ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—™๐—ฒ๐—ฒ๐—น ๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—ฎ ๐—š๐—ฎ๐—บ๐—ฒ๐Ÿ˜

Think SQL is all about dry syntax and boring tutorials? Think again.๐Ÿค”

These 4 gamified SQL websites turn learning into an adventure โ€” from solving murder mysteries to exploring virtual islands, youโ€™ll write real SQL queries while cracking clues and completing missions๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4nh6PMv

These platforms make SQL interactive, practical, and funโœ…๏ธ
Hey guys,

Today, Iโ€™m covering some Excel interview questions that often pop up in data analyst roles ๐Ÿ‘‡๐Ÿ‘‡

1. What are the most common functions used in Excel for data analysis?

- SUM(): Adds up values in a range.
- AVERAGE(): Finds the mean of a range of numbers.
- VLOOKUP() / XLOOKUP(): Searches for a value in a table and returns a related value.
- INDEX-MATCH: A more flexible alternative to VLOOKUP, allowing lookups in any direction.
- IF(): Performs logical tests and returns one value if TRUE, another if FALSE.
- COUNTIF(): Counts the number of cells that meet a specific condition.
- PivotTables: For summarizing, analyzing, and exploring large datasets.

2. What is the difference between VLOOKUP and XLOOKUP?

- VLOOKUP is an older function used to find data in a vertical column and return a value from another column to the right.

Example:

  =VLOOKUP("A2", B2:D10, 3, FALSE)

- XLOOKUP is more powerful, offering the flexibility to search both vertically and horizontally, and it doesnโ€™t require the lookup value to be in the first column.

Example:

  =XLOOKUP(A2, B2:B10, C2:C10)

Tip: Explain the limitations of VLOOKUP (like not being able to search left or needing sorted data for approximate matches) and how XLOOKUP overcomes them.

3. How do you create a PivotTable in Excel, and why is it useful?

A PivotTable allows you to summarize large amounts of data quickly. Hereโ€™s how to create one:

1. Select your data.
2. Go to the Insert tab and click on PivotTable.
3. Choose where to place the PivotTable.
4. Drag and drop fields into the Rows, Columns, Values, and Filters sections.

4. What is conditional formatting, and how do you use it?

Conditional formatting is used to change the appearance of cells based on their content. It helps highlight trends, patterns, and outliers.

For example, to highlight cells greater than 1000:
1. Select the range of cells.
2. Go to the Home tab, click on Conditional Formatting.
3. Choose Highlight Cell Rules > Greater Than and enter 1000.
4. Choose a format (e.g., cell color) to apply.

5. How do you handle large datasets in Excel without slowing it down?

Here are some strategies to improve efficiency:

- Turn off automatic calculations: Use manual recalculation to prevent Excel from recalculating formulas every time you make a change.


  File > Options > Formulas > Calculation Options > Manual

- Use fewer volatile functions: Functions like NOW(), TODAY(), and INDIRECT() recalculate every time a change is made.

- Use tables instead of ranges: Structured references in tables are more efficient.

- Split large datasets: If feasible, split your data across multiple sheets or workbooks.

- Remove unnecessary formatting: Too much formatting can bloat file size and slow down processing.

6. How do you use Excel for data cleaning?

Data cleaning is one of the first and most important steps in data analysis, and Excel provides multiple ways to do this:

- Remove duplicates: Easily eliminate duplicate entries.
  

- Text to Columns: Split data in one column into multiple columns (e.g., splitting full names into first and last names).
  

- TRIM(): Remove extra spaces from text.
  

- FIND() and SUBSTITUTE(): For locating and replacing specific characters or substrings.

7. What are some advanced Excel functions youโ€™ve used for data analysis?

Aside from the basics, some advanced Excel functions you might mention include:

- ARRAYFORMULA(): Allows multiple calculations to be performed at once.
- OFFSET(): Returns a range that is offset from a starting point.
- FORECAST(): Predicts future values based on historical data.
- POWER QUERY: For data extraction, transformation, and loading (ETL) tasks.

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Like for more Interview Resources โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค2
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐Ÿ˜

โœ… Learn essential skills: Excel, SQL, Power BI, Python & more
โœ… Gain industry-recognized certification
โœ… Get government incentives post-completion

๐ŸŽ“ Boost Your Career with Data Analytics โ€“ 100% Free!

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 
 
https://pdlink.in/4l3nFx0
 
Enroll For FREE & Get Certified ๐ŸŽ“
๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ผ ๐—œ๐—บ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€๐—ฒ๐˜ ๐Ÿ˜

โœ… Artificial Intelligence โ€“ Master AI & Machine Learning
โœ… Blockchain โ€“ Understand decentralization & smart contracts๐Ÿ’ฐ
โœ… Cloud Computing โ€“ Learn AWS, Azure&cloud infrastructure โ˜
โœ… Web 3.0 โ€“ Explore the future of the Internet &Apps ๐ŸŒ

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/4aM1QO0

Enroll For FREE & Get Certified ๐ŸŽ“
Step-by-step guide to become a Data Analyst in 2025โ€”๐Ÿ“Š

1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.

2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.

3. Get Formal Education or Certification:
A bachelorโ€™s degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.

4. Build Hands-on Experience:
Work on real-world projectsโ€”use Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.

5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.

6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detailโ€”these are just as important as technical skills.

7. Apply for Entry-Level Jobs:
Look for roles like โ€œJunior Data Analystโ€ or โ€œBusiness Analyst.โ€ Tailor your resume to highlight your skills and portfolio.

8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.

React โค๏ธ for more
โค1
๐—ง๐—ผ๐—ฝ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐Ÿ˜

TCS :- https://pdlink.in/4cHavCa

Infosys :- https://pdlink.in/4jsHZXf

Cisco :- https://pdlink.in/4fYr1xO

HP :- https://pdlink.in/3DrNsxI

IBM :- https://pdlink.in/44GsWoC

Google:- https://pdlink.in/3YsujTV

Microsoft :- https://pdlink.in/40OgK1w

Enroll For FREE & Get Certified ๐ŸŽ“
โค1
Forwarded from Artificial Intelligence
๐Ÿš€ ๐—ง๐—ผ๐—ฝ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฉ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ โ€“ ๐—™๐—ฅ๐—˜๐—˜ & ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ๐Ÿ˜
Boost your resume with real-world experience from global giants! ๐Ÿ’ผ๐Ÿ“Š

๐Ÿ”น Deloitte โ€“ https://pdlink.in/4iKcgA4
๐Ÿ”น Accenture โ€“ https://pdlink.in/44pfljI
๐Ÿ”น TATA โ€“ https://pdlink.in/3FyjDgp
๐Ÿ”น BCG โ€“ https://pdlink.in/4lyeRyY

โœจ 100% Virtual
๐ŸŽ“ Certificate Included
๐Ÿ•’ Flexible Timings
๐Ÿ“ˆ Great for Beginners & Students

Apply now and gain an edge in your career! ๐Ÿš€๐Ÿ“ˆ