Data Analytics & AI | SQL Interviews | Power BI Resources
25.4K subscribers
307 photos
2 videos
151 files
319 links
๐Ÿ”“Explore the fascinating world of Data Analytics & Artificial Intelligence

๐Ÿ’ป Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
๐Ÿฐ ๐—›๐—ถ๐—ด๐—ต-๐—œ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kC18XE

These courses help you gain hands-on experience โ€” exactly what top MNCs look for!โœ…๏ธ
โค1
7 Must-Have Tools for Data Analysts in 2025:

โœ… SQL โ€“ Still the #1 skill for querying and managing structured data
โœ… Excel / Google Sheets โ€“ Quick analysis, pivot tables, and essential calculations
โœ… Python (Pandas, NumPy) โ€“ For deep data manipulation and automation
โœ… Power BI โ€“ Transform data into interactive dashboards
โœ… Tableau โ€“ Visualize data patterns and trends with ease
โœ… Jupyter Notebook โ€“ Document, code, and visualize all in one place
โœ… Looker Studio โ€“ A free and sleek way to create shareable reports with live data.

Perfect blend of code, visuals, and storytelling.

React with โค๏ธ for free tutorials on each tool

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค3
๐Ÿญ๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ โ€“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป, ๐—š๐—ฟ๐—ผ๐˜„, ๐—ฆ๐˜‚๐—ฐ๐—ฐ๐—ฒ๐—ฒ๐—ฑ!๐Ÿ˜

๐Ÿš€ Looking to upgrade your skills without spending a rupee?๐Ÿ’ฐ

Hereโ€™s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ€” all absolutely FREE on Infosys Springboard!๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43UcmQ7

Save this blog, sign up, and start your upskilling journey today!โœ…๏ธ
โค1
Important Python concepts that every beginner should know

1. Variables & Data Types ๐Ÿง 
Variables are like boxes where you store stuff.
Python automatically knows the type of data you're working with!

name = "Alice" # String
age = 25 # Integer
height = 5.6 # Float
is_student = True # Boolean

2. Conditional Statements ๐Ÿ”€
Want your program to make decisions?
Use if, elif, and else!

if age > 18:
print("You're an adult!")
else:
print("You're a kid!")

3. Loops ๐Ÿ”
Repeat tasks without writing them 100 times!

For loop โ€“ Loop over a sequence

While loop โ€“ Loop until a condition is false


for i in range(5):
print(i) # 0 to 4

count = 0
while count < 3:
print("Hello")
count += 1

4. Functions โš™๏ธ
Reusable blocks of code. Keeps your program clean and DRY (Don't Repeat Yourself)!

def greet(name):
print(f"Hello, {name}!")

greet("Bob")

5. Lists, Tuples, Dictionaries, Sets ๐Ÿ“ฆ

List: Ordered, changeable

Tuple: Ordered, unchangeable

Dict: Key-value pairs

Set: Unordered, unique items


my_list = [1, 2, 3]
my_tuple = (4, 5, 6)
my_dict = {"name": "Alice", "age": 25}
my_set = {1, 2, 3}

6. String Manipulation โœ‚๏ธ
Work with text like a pro!

text = "Python is awesome"
print(text.upper()) # PYTHON IS AWESOME
print(text.replace("awesome", "cool")) # Python is cool

7. Input from User โŒจ๏ธ
Make your programs interactive!

name = input("Enter your name: ")
print("Hello " + name)

8. Error Handling โš ๏ธ
Catch mistakes before they crash your program.

try:
x = 1 / 0
except ZeroDivisionError:
print("You can't divide by zero!")

9. File Handling ๐Ÿ“
Read or write files using Python.

with open("notes.txt", "r") as file:
content = file.read()
print(content)

10. Object-Oriented Programming (OOP) ๐Ÿงฑ
Python lets you model real-world things using classes and objects.

class Dog:
def init(self, name):
self.name = name

def bark(self):
print(f"{self.name} says woof!")

my_dog = Dog("Buddy")
my_dog.bark()



React with โค๏ธ if you want me to cover each Python concept in detail.

For all resources and cheat sheets, check out my Telegram channel: https://t.iss.one/pythonproz

Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

Hope it helps :)
โค1๐Ÿ”ฅ1
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ: ๐—ง๐—ต๐—ฒ ๐—•๐—ฒ๐˜€๐˜ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐—ถ๐—ป๐—ด ๐—ฃ๐—ผ๐—ถ๐—ป๐˜ ๐—ณ๐—ผ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต & ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€๐Ÿ˜

๐Ÿš€ Want to break into tech or data analytics but donโ€™t know how to start?๐Ÿ“Œโœจ๏ธ

Python is the #1 most in-demand programming language, and Scalerโ€™s free Python for Beginners course is a game-changer for absolute beginners๐Ÿ“Šโœ”๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45TroYX

No coding background needed!โœ…๏ธ
Advanced Skills to Elevate Your Data Analytics Career

1๏ธโƒฃ SQL Optimization & Performance Tuning

๐Ÿš€ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.

2๏ธโƒฃ Machine Learning Basics

๐Ÿค– Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.

3๏ธโƒฃ Big Data Technologies

๐Ÿ—๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.

4๏ธโƒฃ Data Engineering Skills

โš™๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.

5๏ธโƒฃ Advanced Python for Analytics

๐Ÿ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.

6๏ธโƒฃ A/B Testing & Experimentation

๐ŸŽฏ Design and analyze controlled experiments to drive data-driven decision-making.

7๏ธโƒฃ Dashboard Design & UX

๐ŸŽจ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.

8๏ธโƒฃ Cloud Data Analytics

โ˜๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.

9๏ธโƒฃ Domain Expertise

๐Ÿ’ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.

๐Ÿ”Ÿ Soft Skills & Leadership

๐Ÿ’ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.

Hope it helps :)

#dataanalytics
โค1
๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4e76jMX

Enroll For FREE & Get Certified!โœ…๏ธ
NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
134.6 KB
Cheatsheet on Numpy and pandas for easy viewing ๐Ÿ‘€
ibm_machine_learning_for_dummies.pdf
1.8 MB
Short Machine Learning guide on industry applications and how itโ€™s used to resolve problems ๐Ÿ’ก
โค2
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

๐ŸŽฏ Want to break into Machine Learning but donโ€™t know where to start?โœจ๏ธ

You donโ€™t need a fancy degree or expensive course to begin your ML journey๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jRouYb

This list is for anyone ready to start learning ML from scratchโœ…๏ธ
9 ChatGPT-4o prompt engineering frameworks:

1. A.P.E
A | Action: Define the job or activity.
P | Purpose: Discuss the goal.
E | Expectation: State the desired outcome.

2. T.A.G
T | Task: Define the task.
A | Action: Describe the steps.
G | Goal: Explain the end goal.

3. E.R.A
E | Expectation: Describe the desired result.
R | Role: Specify ChatGPTโ€™s role.
A | Action: Specify needed actions.

4. R.A.C.E
R | Role: Specify ChatGPTโ€™s role.
A | Action: Detail the necessary action.
C | Context: Provide situational details.
E | Expectation: Describe the expected outcome.

5. R.I.S.E
R | Request: Specify ChatGPTโ€™s role.
I | Input: Provide necessary information.
S | Scenario: Detail the steps.
E | Expectation: Describe the result.

6. C.A.R.E
C | Context: Set the stage.
A | Action: Describe the task.
R | Result: Describe the outcome.
E | Example: Give an illustration.

7. C.O.A.S.T
C | Context: Set the stage.
O | Objective: Describe the goal.
A | Actions: Explain needed steps.
S | Steps: Describe the situation.
T | Task: Outline the task.

8. T.R.A.C.E
T | Task: Define the task.
R | Role: Describe the need.
A | Action: State the required action.
C | Context: Provide the context or situation.
E | Expectation: Illustrate with an example.

9. R.O.S.E.S
R | Role: Specify ChatGPTโ€™s role.
O | Objective: State the goal or aim.
S | Steps: Describe the situation.
E | Expected Solution: Define the outcome.
S | Scenario: Ask for actions needed to reach the solution.


React with โค๏ธ for more

Everything about ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
โค4
๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€: ๐Ÿฑ ๐—ฆ๐˜๐—ฒ๐—ฝ๐˜€ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

Want to break into Data Science but donโ€™t know where to begin?๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

Youโ€™re not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.๐Ÿ’ซ๐Ÿ“ฒ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3SU5FJ0

No prior experience needed!โœ…๏ธ
Breaking into Data Science doesnโ€™t need to be complicated.

If youโ€™re just starting out,

Hereโ€™s how to simplify your approach:

Avoid:
๐Ÿšซ Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
๐Ÿšซ Spending months on theoretical concepts without hands-on practice.
๐Ÿšซ Overloading your resume with keywords instead of impactful projects.
๐Ÿšซ Believing you need a Ph.D. to break into the field.

Instead:

โœ… Start with Python or Rโ€”focus on mastering one language first.
โœ… Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
โœ… Dive into a simple machine learning model (like linear regression) to understand the basics.
โœ… Solve real-world problems with open datasets and share them in a portfolio.
โœ… Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š

#ai #datascience
โค4
๐—ง๐—ผ๐—ฝ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ - ๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ก๐—ฒ๐˜…๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐Ÿ˜

๐—ฆ๐—ค๐—Ÿ:- https://pdlink.in/3SMHxaZ

๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป :- https://pdlink.in/3FJhizk

๐—๐—ฎ๐˜ƒ๐—ฎ  :- https://pdlink.in/4dWkAMf

๐——๐—ฆ๐—” :- https://pdlink.in/3FsDA8j

 ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ :- https://pdlink.in/4jLOJ2a

๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ :-  https://pdlink.in/4dFem3o

๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด :- https://pdlink.in/3F00oMw

Get Your Dream Tech Job In Your Dream Company๐Ÿ’ซ
โค1
Effective Communication of Data Insights (Very Important Skill for Data Analysts)

Know Your Audience:

Tip: Tailor your presentation based on the technical expertise and interests of your audience.

Consideration: Avoid jargon when presenting to non-technical stakeholders.


Focus on Key Insights:

Tip: Highlight the most relevant findings and their impact on business goals.

Consideration: Avoid overwhelming your audience with excessive details or raw data.


Use Visuals to Support Your Message:

Tip: Leverage charts, graphs, and dashboards to make your insights more digestible.

Consideration: Ensure visuals are simple and easy to interpret.


Tell a Story:

Tip: Present data in a narrative form to make it engaging and memorable.

Consideration: Use the context of the data to tell a clear story with a beginning, middle, and end.


Provide Actionable Recommendations:

Tip: Focus on practical steps or decisions that can be made based on the data.

Consideration: Offer clear, actionable insights that drive business outcomes.


Be Transparent About Limitations:

Tip: Acknowledge any data limitations or assumptions in your analysis.

Consideration: Being transparent builds trust and shows a thorough understanding of the data.


Encourage Questions:

Tip: Allow for questions and discussions to clarify any doubts.

Consideration: Engage with your audience to ensure full understanding of the insights.

You can find more communication tips here: https://t.iss.one/englishlearnerspro

I have curated Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค1
If you want to Excel in Data Science and become an expert, master these essential concepts:

Core Data Science Skills:

โ€ข Python for Data Science โ€“ Pandas, NumPy, Matplotlib, Seaborn
โ€ข SQL for Data Extraction โ€“ SELECT, JOIN, GROUP BY, CTEs, Window Functions
โ€ข Data Cleaning & Preprocessing โ€“ Handling missing data, outliers, duplicates
โ€ข Exploratory Data Analysis (EDA) โ€“ Visualizing data trends

Machine Learning (ML):

โ€ข Supervised Learning โ€“ Linear Regression, Decision Trees, Random Forest
โ€ข Unsupervised Learning โ€“ Clustering, PCA, Anomaly Detection
โ€ข Model Evaluation โ€“ Cross-validation, Confusion Matrix, ROC-AUC
โ€ข Hyperparameter Tuning โ€“ Grid Search, Random Search

Deep Learning (DL):

โ€ข Neural Networks โ€“ TensorFlow, PyTorch, Keras
โ€ข CNNs & RNNs โ€“ Image & sequential data processing
โ€ข Transformers & LLMs โ€“ GPT, BERT, Stable Diffusion

Big Data & Cloud Computing:

โ€ข Hadoop & Spark โ€“ Handling large datasets
โ€ข AWS, GCP, Azure โ€“ Cloud-based data science solutions
โ€ข MLOps โ€“ Deploy models using Flask, FastAPI, Docker

Statistics & Mathematics for Data Science:

โ€ข Probability & Hypothesis Testing โ€“ P-values, T-tests, Chi-square
โ€ข Linear Algebra & Calculus โ€“ Matrices, Vectors, Derivatives
โ€ข Time Series Analysis โ€“ ARIMA, Prophet, LSTMs

Real-World Applications:

โ€ข Recommendation Systems โ€“ Personalized AI suggestions
โ€ข NLP (Natural Language Processing) โ€“ Sentiment Analysis, Chatbots
โ€ข AI-Powered Business Insights โ€“ Data-driven decision-making

Like this post if you need a complete tutorial on essential data science topics! ๐Ÿ‘โค๏ธ

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
๐Ÿณ ๐—•๐—ฒ๐˜€๐˜ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป & ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€๐Ÿ˜

๐Ÿ’ป You donโ€™t need to spend a rupee to master Python!๐Ÿ

Whether youโ€™re an aspiring Data Analyst, Developer, or Tech Enthusiast, these 7 completely free platforms help you go from zero to confident coder๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4l5XXY2

Enjoy Learning โœ…๏ธ
โค1
Data Analyst Interview Questions

1. What do Tableau's sets and groups mean?

Data is grouped using sets and groups according to predefined criteria. The primary distinction between the two is that although a set can have only two optionsโ€”either in or outโ€”a group can divide the dataset into several groups. A user should decide which group or sets to apply based on the conditions.

2.What in Excel is a macro?

An Excel macro is an algorithm or a group of steps that helps automate an operation by capturing and replaying the steps needed to finish it. Once the steps have been saved, you may construct a Macro that the user can alter and replay as often as they like.

Macro is excellent for routine work because it also gets rid of mistakes. Consider the scenario when an account manager needs to share reports about staff members who owe the company money. If so, it can be automated by utilising a macro and making small adjustments each month as necessary.


3.Gantt chart in Tableau

A Tableau Gantt chart illustrates the duration of events as well as the progression of value across the period. Along with the time axis, it has bars. The Gantt chart is primarily used as a project management tool, with each bar representing a project job.

4.In Microsoft Excel, how do you create a drop-down list?

Start by selecting the Data tab from the ribbon.
Select Data Validation from the Data Tools group.
Go to Settings > Allow > List next.
Choose the source you want to offer in the form of a list array.
โค2
Q1: How do you ensure data consistency and integrity in a data warehousing environment?

Ans: I implement data validation checks, use constraints like primary and foreign keys, and ensure that ETL processes have error-handling mechanisms. Regular audits and data reconciliation processes are also set up to ensure data accuracy and consistency.

Q2: Describe a situation where you had to design a star schema for a data warehousing project.

Ans: For a retail sales data warehousing project, I designed a star schema with a central fact table containing sales transactions. Surrounding this were dimension tables like Products, Stores, Time, and Customers. This structure allowed for efficient querying and reporting of sales metrics across various dimensions.

Q3: How would you use data analytics to assess credit risk for loan applicants?

Ans: I'd analyze the applicant's financial history, including credit score, income, employment stability, and existing debts. Using predictive modeling, I'd assess the probability of default based on historical data of similar applicants. This would help in making informed lending decisions.

Q4: Describe a situation where you had to ensure data security for sensitive financial data.

Ans: While working on a project involving customer transaction data, I ensured that all data was encrypted both at rest and in transit. I also implemented role-based access controls, ensuring that only authorized personnel could access specific data sets. Regular audits and penetration tests were conducted to identify and rectify potential vulnerabilities.
โค1
The Only SQL You Actually Need For Your First Job (Data Analytics)

The Learning Trap: What Most Beginners Fall Into

When starting out, it's common to feel like you need to master every possible SQL concept. You binge YouTube videos, tutorials, and courses, yet still feel lost in interviews or when given a real dataset.

Common traps:

- Complex subqueries

- Advanced CTEs

- Recursive queries

- 100+ tutorials watched

- 0 practical experience


Reality Check: What You'll Actually Use 75% of the Time

Most data analytics roles (especially entry-level) require clarity, speed, and confidence with core SQL operations. Hereโ€™s what covers most daily work:

1. SELECT, FROM, WHERE โ€” The Foundation

SELECT name, age
FROM employees
WHERE department = 'Finance';

This is how almost every query begins. Whether exploring a dataset or building a dashboard, these are always in use.

2. JOINs โ€” Combining Data From Multiple Tables

SELECT e.name, d.department_name
FROM employees e
JOIN departments d ON e.department_id = d.id;

Youโ€™ll often join tables like employee data with department, customer orders with payments, etc.

3. GROUP BY โ€” Summarizing Data

SELECT department, COUNT(*) AS employee_count
FROM employees
GROUP BY department;

Used to get summaries by categories like sales per region or users by plan.

4. ORDER BY โ€” Sorting Results

SELECT name, salary
FROM employees
ORDER BY salary DESC;

Helps sort output for dashboards or reports.

5. Aggregations โ€” Simple But Powerful

Common functions: COUNT(), SUM(), AVG(), MIN(), MAX()

SELECT AVG(salary)
FROM employees
WHERE department = 'IT';

Gives quick insights like average deal size or total revenue.

6. ROW_NUMBER() โ€” Adding Row Logic

SELECT *
FROM (
SELECT *, ROW_NUMBER() OVER(PARTITION BY customer_id ORDER BY order_date DESC) as rn
FROM orders
) sub
WHERE rn = 1;

Used for deduplication, rankings, or selecting the latest record per group.

Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

React โค๏ธ for more
โค3