Data Analytics & AI | SQL Interviews | Power BI Resources
25.4K subscribers
307 photos
2 videos
151 files
319 links
๐Ÿ”“Explore the fascinating world of Data Analytics & Artificial Intelligence

๐Ÿ’ป Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
10 Data Analyst Project Ideas to Boost Your Portfolio

โœ… Sales Dashboard (Power BI/Tableau) โ€“ Analyze revenue, region-wise trends, and KPIs
โœ… HR Analytics โ€“ Employee attrition, retention trends using Excel/SQL/Power BI
โœ… Customer Segmentation (SQL + Excel) โ€“ Analyze buying patterns and group customers
โœ… Survey Data Analysis โ€“ Clean, visualize, and interpret survey insights
โœ… E-commerce Data Analysis โ€“ Funnel analysis, product trends, and revenue mapping
โœ… Superstore Sales Analysis โ€“ Use public datasets to show time series and cohort trends
โœ… Marketing Campaign Effectiveness โ€“ SQL + A/B test analysis with statistical methods
โœ… Financial Dashboard โ€“ Visualize profit, loss, and KPIs using Power BI
โœ… YouTube/Instagram Analytics โ€“ Use social media data to find audience behavior insights
โœ… SQL Reporting Automation โ€“ Build and schedule automated SQL reports and visualizations

React โค๏ธ for more
โค1
This media is not supported in your browser
VIEW IN TELEGRAM
MEE6 in Telegram ๐Ÿ”ฅ

๐Ÿค– T22 - The best-in-class telegram group bot!

Stop juggling bots โ€”T22 is MissRose x GroupHelp x Safeguard with a mini-app dashboard!

๐Ÿ” Verification & Captcha
๐Ÿ›ก Advanced Moderation Tools  
๐Ÿ“ˆ Leveling System
๐Ÿ’ฌ Smart Welcome Flows
๐Ÿฆ Twitter Raids
๐Ÿง  Mini-App Dashboard
๐Ÿ“ฆ Miss Rose Config Importer

Discover T22 ๐Ÿ†“
By MEE6 Creator
โค1
What is the difference between data scientist, data engineer, data analyst and business intelligence?

๐Ÿง‘๐Ÿ”ฌ Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers โ€œWhy is this happening?โ€ and โ€œWhat will happen next?โ€
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month

๐Ÿ› ๏ธ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse

๐Ÿ“Š Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers โ€œWhat happened?โ€ or โ€œWhatโ€™s going on right now?โ€
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region

๐Ÿ“ˆ Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department

๐Ÿงฉ Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers

๐ŸŽฏ In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
โค2
๐Ÿฐ ๐—›๐—ถ๐—ด๐—ต-๐—œ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kC18XE

These courses help you gain hands-on experience โ€” exactly what top MNCs look for!โœ…๏ธ
โค1
7 Must-Have Tools for Data Analysts in 2025:

โœ… SQL โ€“ Still the #1 skill for querying and managing structured data
โœ… Excel / Google Sheets โ€“ Quick analysis, pivot tables, and essential calculations
โœ… Python (Pandas, NumPy) โ€“ For deep data manipulation and automation
โœ… Power BI โ€“ Transform data into interactive dashboards
โœ… Tableau โ€“ Visualize data patterns and trends with ease
โœ… Jupyter Notebook โ€“ Document, code, and visualize all in one place
โœ… Looker Studio โ€“ A free and sleek way to create shareable reports with live data.

Perfect blend of code, visuals, and storytelling.

React with โค๏ธ for free tutorials on each tool

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค3
๐Ÿญ๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ โ€“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป, ๐—š๐—ฟ๐—ผ๐˜„, ๐—ฆ๐˜‚๐—ฐ๐—ฐ๐—ฒ๐—ฒ๐—ฑ!๐Ÿ˜

๐Ÿš€ Looking to upgrade your skills without spending a rupee?๐Ÿ’ฐ

Hereโ€™s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ€” all absolutely FREE on Infosys Springboard!๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43UcmQ7

Save this blog, sign up, and start your upskilling journey today!โœ…๏ธ
โค1
Important Python concepts that every beginner should know

1. Variables & Data Types ๐Ÿง 
Variables are like boxes where you store stuff.
Python automatically knows the type of data you're working with!

name = "Alice" # String
age = 25 # Integer
height = 5.6 # Float
is_student = True # Boolean

2. Conditional Statements ๐Ÿ”€
Want your program to make decisions?
Use if, elif, and else!

if age > 18:
print("You're an adult!")
else:
print("You're a kid!")

3. Loops ๐Ÿ”
Repeat tasks without writing them 100 times!

For loop โ€“ Loop over a sequence

While loop โ€“ Loop until a condition is false


for i in range(5):
print(i) # 0 to 4

count = 0
while count < 3:
print("Hello")
count += 1

4. Functions โš™๏ธ
Reusable blocks of code. Keeps your program clean and DRY (Don't Repeat Yourself)!

def greet(name):
print(f"Hello, {name}!")

greet("Bob")

5. Lists, Tuples, Dictionaries, Sets ๐Ÿ“ฆ

List: Ordered, changeable

Tuple: Ordered, unchangeable

Dict: Key-value pairs

Set: Unordered, unique items


my_list = [1, 2, 3]
my_tuple = (4, 5, 6)
my_dict = {"name": "Alice", "age": 25}
my_set = {1, 2, 3}

6. String Manipulation โœ‚๏ธ
Work with text like a pro!

text = "Python is awesome"
print(text.upper()) # PYTHON IS AWESOME
print(text.replace("awesome", "cool")) # Python is cool

7. Input from User โŒจ๏ธ
Make your programs interactive!

name = input("Enter your name: ")
print("Hello " + name)

8. Error Handling โš ๏ธ
Catch mistakes before they crash your program.

try:
x = 1 / 0
except ZeroDivisionError:
print("You can't divide by zero!")

9. File Handling ๐Ÿ“
Read or write files using Python.

with open("notes.txt", "r") as file:
content = file.read()
print(content)

10. Object-Oriented Programming (OOP) ๐Ÿงฑ
Python lets you model real-world things using classes and objects.

class Dog:
def init(self, name):
self.name = name

def bark(self):
print(f"{self.name} says woof!")

my_dog = Dog("Buddy")
my_dog.bark()



React with โค๏ธ if you want me to cover each Python concept in detail.

For all resources and cheat sheets, check out my Telegram channel: https://t.iss.one/pythonproz

Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

Hope it helps :)
โค1๐Ÿ”ฅ1
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ: ๐—ง๐—ต๐—ฒ ๐—•๐—ฒ๐˜€๐˜ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐—ถ๐—ป๐—ด ๐—ฃ๐—ผ๐—ถ๐—ป๐˜ ๐—ณ๐—ผ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต & ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€๐Ÿ˜

๐Ÿš€ Want to break into tech or data analytics but donโ€™t know how to start?๐Ÿ“Œโœจ๏ธ

Python is the #1 most in-demand programming language, and Scalerโ€™s free Python for Beginners course is a game-changer for absolute beginners๐Ÿ“Šโœ”๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45TroYX

No coding background needed!โœ…๏ธ
Advanced Skills to Elevate Your Data Analytics Career

1๏ธโƒฃ SQL Optimization & Performance Tuning

๐Ÿš€ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.

2๏ธโƒฃ Machine Learning Basics

๐Ÿค– Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.

3๏ธโƒฃ Big Data Technologies

๐Ÿ—๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.

4๏ธโƒฃ Data Engineering Skills

โš™๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.

5๏ธโƒฃ Advanced Python for Analytics

๐Ÿ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.

6๏ธโƒฃ A/B Testing & Experimentation

๐ŸŽฏ Design and analyze controlled experiments to drive data-driven decision-making.

7๏ธโƒฃ Dashboard Design & UX

๐ŸŽจ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.

8๏ธโƒฃ Cloud Data Analytics

โ˜๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.

9๏ธโƒฃ Domain Expertise

๐Ÿ’ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.

๐Ÿ”Ÿ Soft Skills & Leadership

๐Ÿ’ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.

Hope it helps :)

#dataanalytics
โค1
๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4e76jMX

Enroll For FREE & Get Certified!โœ…๏ธ
NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
134.6 KB
Cheatsheet on Numpy and pandas for easy viewing ๐Ÿ‘€
ibm_machine_learning_for_dummies.pdf
1.8 MB
Short Machine Learning guide on industry applications and how itโ€™s used to resolve problems ๐Ÿ’ก
โค2
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

๐ŸŽฏ Want to break into Machine Learning but donโ€™t know where to start?โœจ๏ธ

You donโ€™t need a fancy degree or expensive course to begin your ML journey๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jRouYb

This list is for anyone ready to start learning ML from scratchโœ…๏ธ
9 ChatGPT-4o prompt engineering frameworks:

1. A.P.E
A | Action: Define the job or activity.
P | Purpose: Discuss the goal.
E | Expectation: State the desired outcome.

2. T.A.G
T | Task: Define the task.
A | Action: Describe the steps.
G | Goal: Explain the end goal.

3. E.R.A
E | Expectation: Describe the desired result.
R | Role: Specify ChatGPTโ€™s role.
A | Action: Specify needed actions.

4. R.A.C.E
R | Role: Specify ChatGPTโ€™s role.
A | Action: Detail the necessary action.
C | Context: Provide situational details.
E | Expectation: Describe the expected outcome.

5. R.I.S.E
R | Request: Specify ChatGPTโ€™s role.
I | Input: Provide necessary information.
S | Scenario: Detail the steps.
E | Expectation: Describe the result.

6. C.A.R.E
C | Context: Set the stage.
A | Action: Describe the task.
R | Result: Describe the outcome.
E | Example: Give an illustration.

7. C.O.A.S.T
C | Context: Set the stage.
O | Objective: Describe the goal.
A | Actions: Explain needed steps.
S | Steps: Describe the situation.
T | Task: Outline the task.

8. T.R.A.C.E
T | Task: Define the task.
R | Role: Describe the need.
A | Action: State the required action.
C | Context: Provide the context or situation.
E | Expectation: Illustrate with an example.

9. R.O.S.E.S
R | Role: Specify ChatGPTโ€™s role.
O | Objective: State the goal or aim.
S | Steps: Describe the situation.
E | Expected Solution: Define the outcome.
S | Scenario: Ask for actions needed to reach the solution.


React with โค๏ธ for more

Everything about ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
โค4
๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€: ๐Ÿฑ ๐—ฆ๐˜๐—ฒ๐—ฝ๐˜€ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

Want to break into Data Science but donโ€™t know where to begin?๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

Youโ€™re not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.๐Ÿ’ซ๐Ÿ“ฒ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3SU5FJ0

No prior experience needed!โœ…๏ธ
Breaking into Data Science doesnโ€™t need to be complicated.

If youโ€™re just starting out,

Hereโ€™s how to simplify your approach:

Avoid:
๐Ÿšซ Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
๐Ÿšซ Spending months on theoretical concepts without hands-on practice.
๐Ÿšซ Overloading your resume with keywords instead of impactful projects.
๐Ÿšซ Believing you need a Ph.D. to break into the field.

Instead:

โœ… Start with Python or Rโ€”focus on mastering one language first.
โœ… Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
โœ… Dive into a simple machine learning model (like linear regression) to understand the basics.
โœ… Solve real-world problems with open datasets and share them in a portfolio.
โœ… Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š

#ai #datascience
โค4
๐—ง๐—ผ๐—ฝ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ - ๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ก๐—ฒ๐˜…๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐Ÿ˜

๐—ฆ๐—ค๐—Ÿ:- https://pdlink.in/3SMHxaZ

๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป :- https://pdlink.in/3FJhizk

๐—๐—ฎ๐˜ƒ๐—ฎ  :- https://pdlink.in/4dWkAMf

๐——๐—ฆ๐—” :- https://pdlink.in/3FsDA8j

 ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ :- https://pdlink.in/4jLOJ2a

๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ :-  https://pdlink.in/4dFem3o

๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด :- https://pdlink.in/3F00oMw

Get Your Dream Tech Job In Your Dream Company๐Ÿ’ซ
โค1
Effective Communication of Data Insights (Very Important Skill for Data Analysts)

Know Your Audience:

Tip: Tailor your presentation based on the technical expertise and interests of your audience.

Consideration: Avoid jargon when presenting to non-technical stakeholders.


Focus on Key Insights:

Tip: Highlight the most relevant findings and their impact on business goals.

Consideration: Avoid overwhelming your audience with excessive details or raw data.


Use Visuals to Support Your Message:

Tip: Leverage charts, graphs, and dashboards to make your insights more digestible.

Consideration: Ensure visuals are simple and easy to interpret.


Tell a Story:

Tip: Present data in a narrative form to make it engaging and memorable.

Consideration: Use the context of the data to tell a clear story with a beginning, middle, and end.


Provide Actionable Recommendations:

Tip: Focus on practical steps or decisions that can be made based on the data.

Consideration: Offer clear, actionable insights that drive business outcomes.


Be Transparent About Limitations:

Tip: Acknowledge any data limitations or assumptions in your analysis.

Consideration: Being transparent builds trust and shows a thorough understanding of the data.


Encourage Questions:

Tip: Allow for questions and discussions to clarify any doubts.

Consideration: Engage with your audience to ensure full understanding of the insights.

You can find more communication tips here: https://t.iss.one/englishlearnerspro

I have curated Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค1
If you want to Excel in Data Science and become an expert, master these essential concepts:

Core Data Science Skills:

โ€ข Python for Data Science โ€“ Pandas, NumPy, Matplotlib, Seaborn
โ€ข SQL for Data Extraction โ€“ SELECT, JOIN, GROUP BY, CTEs, Window Functions
โ€ข Data Cleaning & Preprocessing โ€“ Handling missing data, outliers, duplicates
โ€ข Exploratory Data Analysis (EDA) โ€“ Visualizing data trends

Machine Learning (ML):

โ€ข Supervised Learning โ€“ Linear Regression, Decision Trees, Random Forest
โ€ข Unsupervised Learning โ€“ Clustering, PCA, Anomaly Detection
โ€ข Model Evaluation โ€“ Cross-validation, Confusion Matrix, ROC-AUC
โ€ข Hyperparameter Tuning โ€“ Grid Search, Random Search

Deep Learning (DL):

โ€ข Neural Networks โ€“ TensorFlow, PyTorch, Keras
โ€ข CNNs & RNNs โ€“ Image & sequential data processing
โ€ข Transformers & LLMs โ€“ GPT, BERT, Stable Diffusion

Big Data & Cloud Computing:

โ€ข Hadoop & Spark โ€“ Handling large datasets
โ€ข AWS, GCP, Azure โ€“ Cloud-based data science solutions
โ€ข MLOps โ€“ Deploy models using Flask, FastAPI, Docker

Statistics & Mathematics for Data Science:

โ€ข Probability & Hypothesis Testing โ€“ P-values, T-tests, Chi-square
โ€ข Linear Algebra & Calculus โ€“ Matrices, Vectors, Derivatives
โ€ข Time Series Analysis โ€“ ARIMA, Prophet, LSTMs

Real-World Applications:

โ€ข Recommendation Systems โ€“ Personalized AI suggestions
โ€ข NLP (Natural Language Processing) โ€“ Sentiment Analysis, Chatbots
โ€ข AI-Powered Business Insights โ€“ Data-driven decision-making

Like this post if you need a complete tutorial on essential data science topics! ๐Ÿ‘โค๏ธ

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
๐Ÿณ ๐—•๐—ฒ๐˜€๐˜ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป & ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€๐Ÿ˜

๐Ÿ’ป You donโ€™t need to spend a rupee to master Python!๐Ÿ

Whether youโ€™re an aspiring Data Analyst, Developer, or Tech Enthusiast, these 7 completely free platforms help you go from zero to confident coder๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4l5XXY2

Enjoy Learning โœ…๏ธ
โค1