๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฌ๐ผ๐ ๐๐ฎ๐ป ๐ง๐ฎ๐ธ๐ฒ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
๐No MIT Admission? No Problem โ Learn from MIT for Free!๐ฅ
MIT is known for world-class educationโbut you donโt need to walk its halls to access its knowledge๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jBNtP2
These courses offer industry-relevant skills & completion certificates at no costโ ๏ธ
๐No MIT Admission? No Problem โ Learn from MIT for Free!๐ฅ
MIT is known for world-class educationโbut you donโt need to walk its halls to access its knowledge๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jBNtP2
These courses offer industry-relevant skills & completion certificates at no costโ ๏ธ
โค1
โจThe STAR method is a powerful technique used to answer behavioral interview questions effectively.
It helps structure responses by focusing on Situation, Task, Action, and Result. For analytics professionals, using the STAR method ensures that you demonstrate your problem-solving abilities, technical skills, and business acumen in a clear and concise way.
Hereโs how the STAR method works, tailored for an analytics interview:
๐ 1. Situation
Describe the context or challenge you faced. For analysts, this might be related to data challenges, business processes, or system inefficiencies. Be specific about the setting, whether it was a project, a recurring task, or a special initiative.
Example: โAt my previous role as a data analyst at XYZ Company, we were experiencing a high churn rate among our subscription customers. This was a critical issue because it directly impacted revenue.โ*
๐ 2. Task
Explain the responsibilities you had or the goals you needed to achieve in that situation. In analytics, this usually revolves around diagnosing the problem, designing experiments, or conducting data analysis.
Example: โI was tasked with identifying the factors contributing to customer churn and providing actionable insights to the marketing team to help them improve retention.โ*
๐ 3. Action
Detail the specific actions you took to address the problem. Be sure to mention any tools, software, or methodologies you used (e.g., SQL, Python, data #visualization tools, #statistical #models). This is your opportunity to showcase your technical expertise and approach to problem-solving.
Example: โI collected and analyzed customer data using #SQL to extract key trends. I then used #Python for data cleaning and statistical analysis, focusing on engagement metrics, product usage patterns, and customer feedback. I also collaborated with the marketing and product teams to understand business priorities.โ*
๐ 4. Result
Highlight the outcome of your actions, especially any measurable impact. Quantify your results if possible, as this demonstrates your effectiveness as an analyst. Show how your analysis directly influenced business decisions or outcomes.
Example: โAs a result of my analysis, we discovered that customers were disengaging due to a lack of certain product features. My insights led to a targeted marketing campaign and product improvements, reducing churn by 15% over the next quarter.โ*
Example STAR Answer for an Analytics Interview Question:
Question: *"Tell me about a time you used data to solve a business problem."*
Answer (STAR format):
๐ป*S*: โAt my previous company, our sales team was struggling with inconsistent performance, and management wasnโt sure which factors were driving the variance.โ
๐ป*T*: โI was assigned the task of conducting a detailed analysis to identify key drivers of sales performance and propose data-driven recommendations.โ
๐ป*A*: โI began by collecting sales data over the past year and segmented it by region, product line, and sales representative. I then used Python for #statistical #analysis and developed a regression model to determine the key factors influencing sales outcomes. I also visualized the data using #Tableau to present the findings to non-technical stakeholders.โ
๐ป*R*: โThe analysis revealed that product mix and regional seasonality were significant contributors to the variability. Based on my findings, the company adjusted their sales strategy, leading to a 20% increase in sales efficiency in the next quarter.โ
Hope this helps you ๐
It helps structure responses by focusing on Situation, Task, Action, and Result. For analytics professionals, using the STAR method ensures that you demonstrate your problem-solving abilities, technical skills, and business acumen in a clear and concise way.
Hereโs how the STAR method works, tailored for an analytics interview:
๐ 1. Situation
Describe the context or challenge you faced. For analysts, this might be related to data challenges, business processes, or system inefficiencies. Be specific about the setting, whether it was a project, a recurring task, or a special initiative.
Example: โAt my previous role as a data analyst at XYZ Company, we were experiencing a high churn rate among our subscription customers. This was a critical issue because it directly impacted revenue.โ*
๐ 2. Task
Explain the responsibilities you had or the goals you needed to achieve in that situation. In analytics, this usually revolves around diagnosing the problem, designing experiments, or conducting data analysis.
Example: โI was tasked with identifying the factors contributing to customer churn and providing actionable insights to the marketing team to help them improve retention.โ*
๐ 3. Action
Detail the specific actions you took to address the problem. Be sure to mention any tools, software, or methodologies you used (e.g., SQL, Python, data #visualization tools, #statistical #models). This is your opportunity to showcase your technical expertise and approach to problem-solving.
Example: โI collected and analyzed customer data using #SQL to extract key trends. I then used #Python for data cleaning and statistical analysis, focusing on engagement metrics, product usage patterns, and customer feedback. I also collaborated with the marketing and product teams to understand business priorities.โ*
๐ 4. Result
Highlight the outcome of your actions, especially any measurable impact. Quantify your results if possible, as this demonstrates your effectiveness as an analyst. Show how your analysis directly influenced business decisions or outcomes.
Example: โAs a result of my analysis, we discovered that customers were disengaging due to a lack of certain product features. My insights led to a targeted marketing campaign and product improvements, reducing churn by 15% over the next quarter.โ*
Example STAR Answer for an Analytics Interview Question:
Question: *"Tell me about a time you used data to solve a business problem."*
Answer (STAR format):
๐ป*S*: โAt my previous company, our sales team was struggling with inconsistent performance, and management wasnโt sure which factors were driving the variance.โ
๐ป*T*: โI was assigned the task of conducting a detailed analysis to identify key drivers of sales performance and propose data-driven recommendations.โ
๐ป*A*: โI began by collecting sales data over the past year and segmented it by region, product line, and sales representative. I then used Python for #statistical #analysis and developed a regression model to determine the key factors influencing sales outcomes. I also visualized the data using #Tableau to present the findings to non-technical stakeholders.โ
๐ป*R*: โThe analysis revealed that product mix and regional seasonality were significant contributors to the variability. Based on my findings, the company adjusted their sales strategy, leading to a 20% increase in sales efficiency in the next quarter.โ
Hope this helps you ๐
โค2
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ ๐๐ฟ๐ฒ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ!๐
Want to communicate with AI like a pro? ๐ค
Whether youโre a data analyst, AI developer, content creator, or student, this is the must-have skill of 2025โจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/456lMuf
Save this now & unlock your AI potential!โก
Want to communicate with AI like a pro? ๐ค
Whether youโre a data analyst, AI developer, content creator, or student, this is the must-have skill of 2025โจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/456lMuf
Save this now & unlock your AI potential!โก
10 DAX Functions Every Power BI Learner Should Know!
1. SUM
Scenario: Calculate the total sales amount.
DAX Formula: Total Sales = SUM(Sales[SalesAmount])
2. AVERAGE
Scenario: Find the average sales per transaction.
DAX Formula: Average Sales = AVERAGE(Sales[SalesAmount])
3. COUNTROWS
Scenario: Count the number of transactions.
DAX Formula: Transaction Count = COUNTROWS(Sales)
4. DISTINCTCOUNT
Scenario: Count the number of unique customers.
DAX Formula: Unique Customers = DISTINCTCOUNT(Sales[CustomerID])
5. CALCULATE
Scenario: Calculate the total sales for a specific product category.
DAX Formula: Total Sales (Category) = CALCULATE(SUM(Sales[SalesAmount]), Products[Category] = "Electronics")
6. FILTER
Scenario: Calculate the total sales for transactions above a certain amount.
DAX Formula: High Value Sales = CALCULATE(SUM(Sales[SalesAmount]), FILTER(Sales, Sales[SalesAmount] > 1000))
7. IF
Scenario: Create a calculated column to categorize transactions as "High" or "Low" based on sales amount.
DAX Formula: Transaction Category = IF(Sales[SalesAmount] > 500, "High", "Low")
8. RELATED
Scenario: Fetch product names from the Products table into the Sales table.
DAX Formula: Product Name = RELATED(Products[ProductName])
9. YEAR
Scenario: Extract the year from the transaction date.
DAX Formula: Transaction Year = YEAR(Sales[TransactionDate])
10. DATESYTD
Scenario: Calculate year-to-date sales.
DAX Formula: YTD Sales = TOTALYTD(SUM(Sales[SalesAmount]), Sales[TransactionDate])
I have curated the best interview resources to crack Power BI Interviews ๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
1. SUM
Scenario: Calculate the total sales amount.
DAX Formula: Total Sales = SUM(Sales[SalesAmount])
2. AVERAGE
Scenario: Find the average sales per transaction.
DAX Formula: Average Sales = AVERAGE(Sales[SalesAmount])
3. COUNTROWS
Scenario: Count the number of transactions.
DAX Formula: Transaction Count = COUNTROWS(Sales)
4. DISTINCTCOUNT
Scenario: Count the number of unique customers.
DAX Formula: Unique Customers = DISTINCTCOUNT(Sales[CustomerID])
5. CALCULATE
Scenario: Calculate the total sales for a specific product category.
DAX Formula: Total Sales (Category) = CALCULATE(SUM(Sales[SalesAmount]), Products[Category] = "Electronics")
6. FILTER
Scenario: Calculate the total sales for transactions above a certain amount.
DAX Formula: High Value Sales = CALCULATE(SUM(Sales[SalesAmount]), FILTER(Sales, Sales[SalesAmount] > 1000))
7. IF
Scenario: Create a calculated column to categorize transactions as "High" or "Low" based on sales amount.
DAX Formula: Transaction Category = IF(Sales[SalesAmount] > 500, "High", "Low")
8. RELATED
Scenario: Fetch product names from the Products table into the Sales table.
DAX Formula: Product Name = RELATED(Products[ProductName])
9. YEAR
Scenario: Extract the year from the transaction date.
DAX Formula: Transaction Year = YEAR(Sales[TransactionDate])
10. DATESYTD
Scenario: Calculate year-to-date sales.
DAX Formula: YTD Sales = TOTALYTD(SUM(Sales[SalesAmount]), Sales[TransactionDate])
I have curated the best interview resources to crack Power BI Interviews ๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
โค1
Forwarded from Python Projects & Resources
๐ฑ ๐๐ฅ๐๐ ๐ ๐๐ง ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐ง๐ฒ๐ฐ๐ต, ๐๐ & ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ๐
Dreaming of an MIT education without the tuition fees? ๐ฏ
These 5 FREE courses from MIT will help you master the fundamentals of programming, AI, machine learning, and data scienceโall from the comfort of your home! ๐โจ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45cvR95
Your gateway to a smarter careerโ ๏ธ
Dreaming of an MIT education without the tuition fees? ๐ฏ
These 5 FREE courses from MIT will help you master the fundamentals of programming, AI, machine learning, and data scienceโall from the comfort of your home! ๐โจ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45cvR95
Your gateway to a smarter careerโ ๏ธ
โค1
๐ฑ ๐ฃ๐ผ๐๐ฒ๐ฟ๐ณ๐๐น ๐๐ถ๐๐๐๐ฏ ๐ฅ๐ฒ๐ฝ๐ผ๐๐ถ๐๐ผ๐ฟ๐ถ๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฃ๐๐๐ต๐ผ๐ป ๐ณ๐ผ๐ฟ ๐๐ฟ๐ฒ๐ฒ๐
Looking to Master Python for Free?โจ๏ธ
These 5 GitHub repositories are all you need to level up โ from beginner to advanced! ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FG7DcW
๐ Save this post & share it with a Python learner!
Looking to Master Python for Free?โจ๏ธ
These 5 GitHub repositories are all you need to level up โ from beginner to advanced! ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FG7DcW
๐ Save this post & share it with a Python learner!
๐ฒ ๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐ง๐ผ ๐๐ต๐ฎ๐ป๐ด๐ฒ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
๐ฏ Want to switch careers or upgrade your skills โ without spending a single rupee?
Check out 6 handpicked, beginner-friendly courses in high-demand fields like Data Science, Web Development, Digital Marketing, Project Management, and more. ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4e1I17a
๐ฅ Start learning today and build the skills top companies want!โ ๏ธ
๐ฏ Want to switch careers or upgrade your skills โ without spending a single rupee?
Check out 6 handpicked, beginner-friendly courses in high-demand fields like Data Science, Web Development, Digital Marketing, Project Management, and more. ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4e1I17a
๐ฅ Start learning today and build the skills top companies want!โ ๏ธ
Use of Machine Learning in Data Analytics
๐2โค1
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ ๐๐ถ๐๐ต ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐จ๐ป๐ถ๐๐ฒ๐ฟ๐๐ถ๐๐๐
๐ฏ Want to break into Data Science without spending a single rupee?๐ฐ
Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HxOgTW
These courses are designed by Ivy League experts and are trusted by thousands globallyโ ๏ธ
๐ฏ Want to break into Data Science without spending a single rupee?๐ฐ
Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HxOgTW
These courses are designed by Ivy League experts and are trusted by thousands globallyโ ๏ธ
โค1
Data Science Interview Questions with Answers
Whatโs the difference between random forest and gradient boosting?
Random Forests builds each tree independently while Gradient Boosting builds one tree at a time.
Random Forests combine results at the end of the process (by averaging or "majority rules") while Gradient Boosting combines results along the way.
What happens to our linear regression model if we have three columns in our data: x, y, z โโโ and z is a sum of x and y?
We would not be able to perform the regression. Because z is linearly dependent on x and y so when performing the regression would be a singular (not invertible) matrix.
Which regularization techniques do you know?
There are mainly two types of regularization,
L1 Regularization (Lasso regularization) - Adds the sum of absolute values of the coefficients to the cost function.
L2 Regularization (Ridge regularization) - Adds the sum of squares of coefficients to the cost function
Here, Lambda determines the amount of regularization.
How does L2 regularization look like in a linear model?
L2 regularization adds a penalty term to our cost function which is equal to the sum of squares of models coefficients multiplied by a lambda hyperparameter.
This technique makes sure that the coefficients are close to zero and is widely used in cases when we have a lot of features that might correlate with each other.
What are the main parameters in the gradient boosting model?
There are many parameters, but below are a few key defaults.
learning_rate=0.1 (shrinkage).
n_estimators=100 (number of trees).
max_depth=3.
min_samples_split=2.
min_samples_leaf=1.
subsample=1.0.
Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Whatโs the difference between random forest and gradient boosting?
Random Forests builds each tree independently while Gradient Boosting builds one tree at a time.
Random Forests combine results at the end of the process (by averaging or "majority rules") while Gradient Boosting combines results along the way.
What happens to our linear regression model if we have three columns in our data: x, y, z โโโ and z is a sum of x and y?
We would not be able to perform the regression. Because z is linearly dependent on x and y so when performing the regression would be a singular (not invertible) matrix.
Which regularization techniques do you know?
There are mainly two types of regularization,
L1 Regularization (Lasso regularization) - Adds the sum of absolute values of the coefficients to the cost function.
L2 Regularization (Ridge regularization) - Adds the sum of squares of coefficients to the cost function
Here, Lambda determines the amount of regularization.
How does L2 regularization look like in a linear model?
L2 regularization adds a penalty term to our cost function which is equal to the sum of squares of models coefficients multiplied by a lambda hyperparameter.
This technique makes sure that the coefficients are close to zero and is widely used in cases when we have a lot of features that might correlate with each other.
What are the main parameters in the gradient boosting model?
There are many parameters, but below are a few key defaults.
learning_rate=0.1 (shrinkage).
n_estimators=100 (number of trees).
max_depth=3.
min_samples_split=2.
min_samples_leaf=1.
subsample=1.0.
Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
Forwarded from Python Projects & Resources
๐๐๐ ๐
๐๐๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง ๐๐จ๐ฎ๐ซ๐ฌ๐๐ฌ๐
๐ Dive into the world of Data Analytics with these 6 free courses by IBM!
Gain practical knowledge and stand out in your career with tools designed for real-world applications.
All courses come with expert guidance and are free to access!๐
๐๐ข๐ง๐ค ๐:-
https://bit.ly/4iXOmmb
Enroll For FREE & Get Certified ๐
๐ Dive into the world of Data Analytics with these 6 free courses by IBM!
Gain practical knowledge and stand out in your career with tools designed for real-world applications.
All courses come with expert guidance and are free to access!๐
๐๐ข๐ง๐ค ๐:-
https://bit.ly/4iXOmmb
Enroll For FREE & Get Certified ๐
10 Data Analyst Project Ideas to Boost Your Portfolio
โ Sales Dashboard (Power BI/Tableau) โ Analyze revenue, region-wise trends, and KPIs
โ HR Analytics โ Employee attrition, retention trends using Excel/SQL/Power BI
โ Customer Segmentation (SQL + Excel) โ Analyze buying patterns and group customers
โ Survey Data Analysis โ Clean, visualize, and interpret survey insights
โ E-commerce Data Analysis โ Funnel analysis, product trends, and revenue mapping
โ Superstore Sales Analysis โ Use public datasets to show time series and cohort trends
โ Marketing Campaign Effectiveness โ SQL + A/B test analysis with statistical methods
โ Financial Dashboard โ Visualize profit, loss, and KPIs using Power BI
โ YouTube/Instagram Analytics โ Use social media data to find audience behavior insights
โ SQL Reporting Automation โ Build and schedule automated SQL reports and visualizations
React โค๏ธ for more
โ Sales Dashboard (Power BI/Tableau) โ Analyze revenue, region-wise trends, and KPIs
โ HR Analytics โ Employee attrition, retention trends using Excel/SQL/Power BI
โ Customer Segmentation (SQL + Excel) โ Analyze buying patterns and group customers
โ Survey Data Analysis โ Clean, visualize, and interpret survey insights
โ E-commerce Data Analysis โ Funnel analysis, product trends, and revenue mapping
โ Superstore Sales Analysis โ Use public datasets to show time series and cohort trends
โ Marketing Campaign Effectiveness โ SQL + A/B test analysis with statistical methods
โ Financial Dashboard โ Visualize profit, loss, and KPIs using Power BI
โ YouTube/Instagram Analytics โ Use social media data to find audience behavior insights
โ SQL Reporting Automation โ Build and schedule automated SQL reports and visualizations
React โค๏ธ for more
โค1