Data Analytics & AI | SQL Interviews | Power BI Resources
25.3K subscribers
307 photos
2 videos
151 files
319 links
๐Ÿ”“Explore the fascinating world of Data Analytics & Artificial Intelligence

๐Ÿ’ป Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
Power BI interview questions and answers ๐Ÿ˜„๐Ÿ‘‡

1. Question: What is Power BI?

   Answer: Power BI is a business analytics service by Microsoft that provides interactive visualizations and business intelligence capabilities with an interface simple enough for end-users to create their reports and dashboards.

2. Question: Differentiate between Power BI Desktop, Power BI Service, and Power BI Mobile.

   Answer: Power BI Desktop is used for creating reports, Power BI Service (or Power BI Online) is the cloud service for sharing and collaborating on reports, and Power BI Mobile allows users to access reports on mobile devices.

3. Question: Explain the role of Power Query in Power BI.

   Answer: Power Query is used for data transformation and shaping. It allows users to connect to various data sources, clean and transform data before loading it into Power BI for analysis.

4. Question: What is DAX in Power BI, and why is it important?

   Answer: DAX (Data Analysis Expressions) is a formula language used for creating custom calculations in Power BI. It is important as it enables users to create sophisticated measures and calculated columns.

5. Question: How do you create relationships between tables in Power BI?

   Answer: In Power BI Desktop, go to the "Model" view, drag and drop fields from one table to another to create relationships based on common keys.

6. Question: What is the difference between a calculated column and a measure in Power BI?

   Answer: A calculated column is a column added to a table, computed row by row, while a measure is a formula applied to a set of data, providing a dynamic calculation based on the context.

7. Question: How can you implement row-level security in Power BI?

   Answer: Row-level security in Power BI can be implemented by creating roles in Power BI Desktop and defining filters at the row level based on user roles.

8. Question: Explain the purpose of the Power BI Gateway.

   Answer: The Power BI Gateway allows for a secure connection between Power BI services and on-premises data sources. It facilitates refreshing datasets and running scheduled refreshes.

9. Question: What is a Power BI dashboard?

   Answer: A Power BI dashboard is a single-page, interactive view of your data that provides a consolidated and visualized summary of key metrics. It can include visuals, images, and live data.

10. Question: How can you share a Power BI report with others?

    Answer: Power BI reports can be shared through the Power BI service. Publish the report to the Power BI service, and then share it with specific users or distribute it widely within an organization.
โค1๐Ÿ‘1
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ถ๐—ป ๐—๐˜‚๐˜€๐˜ ๐Ÿฏ ๐— ๐—ผ๐—ป๐˜๐—ต๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ถ๐˜€ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ถ๐˜๐—›๐˜‚๐—ฏ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ๐Ÿ˜

๐ŸŽฏ Want to Master Data Science in Just 3 Months?๐Ÿ“Š

Feeling overwhelmed by the sheer volume of resources and donโ€™t know where to start? Youโ€™re not alone๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43uHPrX

This FREE GitHub roadmap is a game-changer for anyoneโœ…๏ธ
Data Analyst vs Data Engineer vs Data Scientist โœ…

Skills required to become a Data Analyst ๐Ÿ‘‡

- Advanced Excel: Proficiency in Excel is crucial for data manipulation, analysis, and creating dashboards.
- SQL/Oracle: SQL is essential for querying databases to extract, manipulate, and analyze data.
- Python/R: Basic scripting knowledge in Python or R for data cleaning, analysis, and simple automations.
- Data Visualization: Tools like Power BI or Tableau for creating interactive reports and dashboards.
- Statistical Analysis: Understanding of basic statistical concepts to analyze data trends and patterns.


Skills required to become a Data Engineer: ๐Ÿ‘‡

- Programming Languages: Strong skills in Python or Java for building data pipelines and processing data.
- SQL and NoSQL: Knowledge of relational databases (SQL) and non-relational databases (NoSQL) like Cassandra or MongoDB.
- Big Data Technologies: Proficiency in Hadoop, Hive, Pig, or Spark for processing and managing large data sets.
- Data Warehousing: Experience with tools like Amazon Redshift, Google BigQuery, or Snowflake for storing and querying large datasets.
- ETL Processes: Expertise in Extract, Transform, Load (ETL) tools and processes for data integration.


Skills required to become a Data Scientist: ๐Ÿ‘‡

- Advanced Tools: Deep knowledge of R, Python, or SAS for statistical analysis and data modeling.
- Machine Learning Algorithms: Understanding and implementation of algorithms using libraries like scikit-learn, TensorFlow, and Keras.
- SQL and NoSQL: Ability to work with both structured and unstructured data using SQL and NoSQL databases.
- Data Wrangling & Preprocessing: Skills in cleaning, transforming, and preparing data for analysis.
- Statistical and Mathematical Modeling: Strong grasp of statistics, probability, and mathematical techniques for building predictive models.
- Cloud Computing: Familiarity with AWS, Azure, or Google Cloud for deploying machine learning models.

Bonus Skills Across All Roles:

- Data Visualization: Mastery in tools like Power BI and Tableau to visualize and communicate insights effectively.
- Advanced Statistics: Strong statistical foundation to interpret and validate data findings.
- Domain Knowledge: Industry-specific knowledge (e.g., finance, healthcare) to apply data insights in context.
- Communication Skills: Ability to explain complex technical concepts to non-technical stakeholders.

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค3
Forwarded from Artificial Intelligence
๐—ง๐—ผ๐—ฝ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—›๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜๐˜€๐Ÿ˜

๐—”๐—ฝ๐—ฝ๐—น๐˜† ๐—Ÿ๐—ถ๐—ป๐—ธ๐˜€:-๐Ÿ‘‡

S&P Global :- https://pdlink.in/3ZddwVz

IBM :- https://pdlink.in/4kDmMKE

TVS Credit :- https://pdlink.in/4mI0JVc

Sutherland :- https://pdlink.in/4mGYBgg

Other Jobs :- https://pdlink.in/44qEIDu

Apply before the link expires ๐Ÿ’ซ
30 Days Python Roadmap for Data Analysts ๐Ÿ‘†
โค2
๐Ÿฐ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to Boost Your Resume with In-Demand Python Skills?๐Ÿ‘จโ€๐Ÿ’ป

In todayโ€™s tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Hnx3wh

Enjoy Learning โœ…๏ธ
Hey guys!

Iโ€™ve been getting a lot of requests from you all asking for solid Data Analytics projects that can help you boost resume and build real skills.

So here you go โ€”

These arenโ€™t just โ€œfor practice,โ€ theyโ€™re portfolio-worthy projects that show recruiters youโ€™re ready for real-world work.

1. Sales Performance Dashboard

Tools: Excel / Power BI / Tableau
Youโ€™ll take raw sales data and turn it into a clean, interactive dashboard. Show key metrics like revenue, profit, top products, and regional trends.
Skills you build: Data cleaning, slicing & filtering, dashboard creation, business storytelling.

2. Customer Churn Analysis

Tools: Python (Pandas, Seaborn)

Work with a telecom or SaaS dataset to identify which customers are likely to leave and why.

Skills you build: Exploratory data analysis, visualization, correlation, and basic machine learning.


3. E-commerce Product Insights using SQL

Tools: SQL + Power BI

Analyze product categories, top-selling items, and revenue trends from a sample e-commerce dataset.

Skills you build: Joins, GROUP BY, aggregation, data modeling, and visual storytelling.


4. HR Analytics Dashboard

Tools: Excel / Power BI

Dive into employee data to find patterns in attrition, hiring trends, average salaries by department, etc.

Skills you build: Data summarization, calculated fields, visual formatting, DAX basics.


5. Movie Trends Analysis (Netflix or IMDb Dataset)

Tools: Python (Pandas, Matplotlib)

Explore trends across genres, ratings, and release years. Great for people who love entertainment and want to show creativity.

Skills you build: Data wrangling, time-series plots, filtering techniques.


6. Marketing Campaign Analysis

Tools: Excel / Power BI / SQL

Analyze data from a marketing campaign to measure ROI, conversion rates, and customer engagement. Identify which channels or strategies worked best and suggest improvements.

Skills you build: Data blending, KPI calculation, segmentation, and actionable insights.


7. Financial Expense Analysis & Budget Forecasting

Tools: Excel / Power BI / Python

Work on a companyโ€™s expense data to analyze spending patterns, categorize expenses, and create a forecasting model to predict future budgets.

Skills you build: Time series analysis, forecasting, budgeting, and financial storytelling.


Pick 2โ€“3 projects. Donโ€™t just show the final visuals โ€” explain your process on LinkedIn or GitHub. Thatโ€™s what sets you apart.

Like for more useful content โค๏ธ
โค5
Forwarded from Artificial Intelligence
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐Ÿฒ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜!๐Ÿ˜

Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!๐Ÿ‘จโ€๐Ÿ’ป

No need for expensive coursesโ€”start learning for FREE today!๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Ddxd7P

Donโ€™t miss this opportunityโ€”start learning today and take your skills to the next level!โœ…๏ธ
๐—ฆ๐—ค๐—Ÿ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—™๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€๐Ÿ˜

SQL is the backbone of data analytics. Whether youโ€™re cleaning data, generating reports, or exploring trendsโ€”SQL helps you turn raw information into actionable insights.

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43lI7CO

Use ChatGPT like a developer โ€” not just a casual userโœ…๏ธ
๐Ÿ‘2
โšก๏ธ Stanford Released a Free Course on Language Modeling from Scratch

The university is currently teaching CS336: Language Modeling from Scratch - and uploading the full course to YouTube for everyone in real time.

Hereโ€™s why itโ€™s a big deal:

โ€ข Anyone can learn to build their own language models from zero - completely free
โ€ข Full course: from architecture and tokenizers to RL training and scaling
โ€ข Explained step-by-step, beginner-friendly (even if youโ€™re new to coding)
โ€ข Each lecture includes extra reading, assignments, and slides

๐Ÿ“š Course site: https://web.stanford.edu/class/cs336
โ–ถ๏ธ YouTube playlist: Watch here
โค2
Sber500 is now accepting applications for its 6th batch โ€” an international accelerator for tech startups in AI, DeepTech, FinTech, and beyond.

This fully online, 12-week program is designed for early-stage teams โ€” whether youโ€™ve got an MVP or a product ready to scale. Open to founders worldwide, with a special focus on BRICS countries. The participation is totally free!

๐Ÿš€ Whatโ€™s in it for you:

โ€ข Mentors from 17+ countries, including experts from Google, Amazon, Oracle
โ€ข Access to VCs, corporate partners, and pilot opportunities
โ€ข PR visibility in a fast-growing ecosystem
โ€ข Strategic entry into the Russian market

The top 25 teams will pitch live at Demo Day in Moscow to investors, corporates, and Sber leadership.

Yes, the application form is detailed โ€” and thatโ€™s intentional. The more effort you put in now, the greater your chances of joining. Donโ€™t rush it โ€” this is your gateway to major opportunities.

๐Ÿ“… Deadline extended: June 9
Apply now โ†’ https://tinyurl.com/6wunzste

If youโ€™re building something bold and ambitious โ€” this is your moment. Join us!
โค2
๐Ÿฑ ๐— ๐˜‚๐˜€๐˜-๐—™๐—ผ๐—น๐—น๐—ผ๐˜„ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ต๐—ฎ๐—ป๐—ป๐—ฒ๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—”๐˜€๐—ฝ๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to Become a Data Scientist in 2025? Start Here!๐ŸŽฏ

If youโ€™re serious about becoming a Data Scientist in 2025, the learning doesnโ€™t have to be expensive โ€” or boring!๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kfBR5q

Perfect for beginners and aspiring prosโœ…๏ธ
๐Ÿ‘1
๐Ÿš€ Complete Roadmap to Become a Data Scientist in 5 Months

๐Ÿ“… Week 1-2: Fundamentals
โœ… Day 1-3: Introduction to Data Science, its applications, and roles.
โœ… Day 4-7: Brush up on Python programming ๐Ÿ.
โœ… Day 8-10: Learn basic statistics ๐Ÿ“Š and probability ๐ŸŽฒ.

๐Ÿ” Week 3-4: Data Manipulation & Visualization
๐Ÿ“ Day 11-15: Master Pandas for data manipulation.
๐Ÿ“ˆ Day 16-20: Learn Matplotlib & Seaborn for data visualization.

๐Ÿค– Week 5-6: Machine Learning Foundations
๐Ÿ”ฌ Day 21-25: Introduction to scikit-learn.
๐Ÿ“Š Day 26-30: Learn Linear & Logistic Regression.

๐Ÿ— Week 7-8: Advanced Machine Learning
๐ŸŒณ Day 31-35: Explore Decision Trees & Random Forests.
๐Ÿ“Œ Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.

๐Ÿง  Week 9-10: Deep Learning
๐Ÿค– Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
๐Ÿ“ธ Day 46-50: Learn CNNs & RNNs for image & text data.

๐Ÿ› Week 11-12: Data Engineering
๐Ÿ—„ Day 51-55: Learn SQL & Databases.
๐Ÿงน Day 56-60: Data Preprocessing & Cleaning.

๐Ÿ“Š Week 13-14: Model Evaluation & Optimization
๐Ÿ“ Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
๐Ÿ“‰ Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).

๐Ÿ— Week 15-16: Big Data & Tools
๐Ÿ˜ Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
โ˜๏ธ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).

๐Ÿš€ Week 17-18: Deployment & Production
๐Ÿ›  Day 81-85: Deploy models using Flask or FastAPI.
๐Ÿ“ฆ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).

๐ŸŽฏ Week 19-20: Specialization
๐Ÿ“ Day 91-95: Choose NLP or Computer Vision, based on your interest.

๐Ÿ† Week 21-22: Projects & Portfolio
๐Ÿ“‚ Day 96-100: Work on Personal Data Science Projects.

๐Ÿ’ฌ Week 23-24: Soft Skills & Networking
๐ŸŽค Day 101-105: Improve Communication & Presentation Skills.
๐ŸŒ Day 106-110: Attend Online Meetups & Forums.

๐ŸŽฏ Week 25-26: Interview Preparation
๐Ÿ’ป Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
๐Ÿ“‚ Day 116-120: Review your projects & prepare for discussions.

๐Ÿ‘จโ€๐Ÿ’ป Week 27-28: Apply for Jobs
๐Ÿ“ฉ Day 121-125: Start applying for Entry-Level Data Scientist positions.

๐ŸŽค Week 29-30: Interviews
๐Ÿ“ Day 126-130: Attend Interviews & Practice Whiteboard Problems.

๐Ÿ”„ Week 31-32: Continuous Learning
๐Ÿ“ฐ Day 131-135: Stay updated with the Latest Data Science Trends.

๐Ÿ† Week 33-34: Accepting Offers
๐Ÿ“ Day 136-140: Evaluate job offers & Negotiate Your Salary.

๐Ÿข Week 35-36: Settling In
๐ŸŽฏ Day 141-150: Start your New Data Science Job, adapt & keep learning!

๐ŸŽ‰ Enjoy Learning & Build Your Dream Career in Data Science! ๐Ÿš€๐Ÿ”ฅ
โค3
๐ŸŽ“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ, ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ, ๐— ๐—œ๐—ง & ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ๐Ÿ˜

Why pay thousands when you can access world-class Computer Science courses for free? ๐ŸŒ

Top institutions like Harvard, Stanford, MIT, and Google offer high-quality learning resources to help you master in-demand tech skills๐Ÿ‘จโ€๐ŸŽ“๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3ZyQpFd

Perfect for students, self-learners, and career switchersโœ…๏ธ
โค1
A-Z of Data Science Part-1
โค2