Forwarded from AI Prompts | ChatGPT | Google Gemini | Claude
๐ง๐ผ๐ฝ ๐ ๐ก๐๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified ๐
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified ๐
10 Ways to Speed Up Your Python Code
1. List Comprehensions
numbers = [x**2 for x in range(100000) if x % 2 == 0]
instead of
numbers = []
for x in range(100000):
if x % 2 == 0:
numbers.append(x**2)
2. Use the Built-In Functions
Many of Pythonโs built-in functions are written in C, which makes them much faster than a pure python solution.
3. Function Calls Are Expensive
Function calls are expensive in Python. While it is often good practice to separate code into functions, there are times where you should be cautious about calling functions from inside of a loop. It is better to iterate inside a function than to iterate and call a function each iteration.
4. Lazy Module Importing
If you want to use the time.sleep() function in your code, you don't necessarily need to import the entire time package. Instead, you can just do from time import sleep and avoid the overhead of loading basically everything.
5. Take Advantage of Numpy
Numpy is a highly optimized library built with C. It is almost always faster to offload complex math to Numpy rather than relying on the Python interpreter.
6. Try Multiprocessing
Multiprocessing can bring large performance increases to a Python script, but it can be difficult to implement properly compared to other methods mentioned in this post.
7. Be Careful with Bulky Libraries
One of the advantages Python has over other programming languages is the rich selection of third-party libraries available to developers. But, what we may not always consider is the size of the library we are using as a dependency, which could actually decrease the performance of your Python code.
8. Avoid Global Variables
Python is slightly faster at retrieving local variables than global ones. It is simply best to avoid global variables when possible.
9. Try Multiple Solutions
Being able to solve a problem in multiple ways is nice. But, there is often a solution that is faster than the rest and sometimes it comes down to just using a different method or data structure.
10. Think About Your Data Structures
Searching a dictionary or set is insanely fast, but lists take time proportional to the length of the list. However, sets and dictionaries do not maintain order. If you care about the order of your data, you canโt make use of dictionaries or sets.
Best Programming Resources: https://topmate.io/coding/898340
All the best ๐๐
1. List Comprehensions
numbers = [x**2 for x in range(100000) if x % 2 == 0]
instead of
numbers = []
for x in range(100000):
if x % 2 == 0:
numbers.append(x**2)
2. Use the Built-In Functions
Many of Pythonโs built-in functions are written in C, which makes them much faster than a pure python solution.
3. Function Calls Are Expensive
Function calls are expensive in Python. While it is often good practice to separate code into functions, there are times where you should be cautious about calling functions from inside of a loop. It is better to iterate inside a function than to iterate and call a function each iteration.
4. Lazy Module Importing
If you want to use the time.sleep() function in your code, you don't necessarily need to import the entire time package. Instead, you can just do from time import sleep and avoid the overhead of loading basically everything.
5. Take Advantage of Numpy
Numpy is a highly optimized library built with C. It is almost always faster to offload complex math to Numpy rather than relying on the Python interpreter.
6. Try Multiprocessing
Multiprocessing can bring large performance increases to a Python script, but it can be difficult to implement properly compared to other methods mentioned in this post.
7. Be Careful with Bulky Libraries
One of the advantages Python has over other programming languages is the rich selection of third-party libraries available to developers. But, what we may not always consider is the size of the library we are using as a dependency, which could actually decrease the performance of your Python code.
8. Avoid Global Variables
Python is slightly faster at retrieving local variables than global ones. It is simply best to avoid global variables when possible.
9. Try Multiple Solutions
Being able to solve a problem in multiple ways is nice. But, there is often a solution that is faster than the rest and sometimes it comes down to just using a different method or data structure.
10. Think About Your Data Structures
Searching a dictionary or set is insanely fast, but lists take time proportional to the length of the list. However, sets and dictionaries do not maintain order. If you care about the order of your data, you canโt make use of dictionaries or sets.
Best Programming Resources: https://topmate.io/coding/898340
All the best ๐๐
โค1
Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
๐ Learn In-Demand Tech Skills for Free โ Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified๐๏ธ
๐ Learn In-Demand Tech Skills for Free โ Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified๐๏ธ
โค1
๐๐ฅ๐๐ ๐ง๐๐ง๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ๐
Gain Real-World Data Analytics Experience with TATA โ 100% Free!
This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ no experience required!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FyjDgp
Enroll For FREE & Get Certified๐๏ธ
Gain Real-World Data Analytics Experience with TATA โ 100% Free!
This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ no experience required!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FyjDgp
Enroll For FREE & Get Certified๐๏ธ
โค1
5 misconceptions about data analytics (and what's actually true):
โ The more sophisticated the tool, the better the analyst
โ Many analysts do their jobs with "basic" tools like Excel
โ You're just there to crunch the numbers
โ You need to be able to tell a story with the data
โ You need super advanced math skills
โ Understanding basic math and statistics is a good place to start
โ Data is always clean and accurate
โ Data is never clean and 100% accurate (without lots of prep work)
โ You'll work in isolation and not talk to anyone
โ Communication with your team and your stakeholders is essential
โ The more sophisticated the tool, the better the analyst
โ Many analysts do their jobs with "basic" tools like Excel
โ You're just there to crunch the numbers
โ You need to be able to tell a story with the data
โ You need super advanced math skills
โ Understanding basic math and statistics is a good place to start
โ Data is always clean and accurate
โ Data is never clean and 100% accurate (without lots of prep work)
โ You'll work in isolation and not talk to anyone
โ Communication with your team and your stakeholders is essential
โค2
Forwarded from Power BI & Tableau Resources
๐ฎ๐ณ ๐ฅ๐ฒ๐ฎ๐น ๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐ ๐ณ๐ฟ๐ผ๐บ ๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐๐ถ๐ธ๐ฒ ๐๐๐ , ๐๐ฎ๐ฝ๐ด๐ฒ๐บ๐ถ๐ป๐ถ & ๐๐ฒ๐น๐ผ๐ถ๐๐๐ฒ๐
This blog brings you 27 real Power BI interview questions asked by top companies like IBM, Capgemini, Deloitte, and more๐ฃ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dFem3o
Most importantโinterview questionsโ ๏ธ
This blog brings you 27 real Power BI interview questions asked by top companies like IBM, Capgemini, Deloitte, and more๐ฃ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dFem3o
Most importantโinterview questionsโ ๏ธ
โค1
๐ด ๐๐ฒ๐๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ, ๐ ๐๐ง & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ๐
๐ Learn Data Science for Free from the Worldโs Best Universities๐
Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online โ and theyโre 100% free. ๐ฏ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hfpwjc
All The Best ๐
๐ Learn Data Science for Free from the Worldโs Best Universities๐
Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online โ and theyโre 100% free. ๐ฏ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hfpwjc
All The Best ๐
Power BI interview questions and answers ๐๐
1. Question: What is Power BI?
Answer: Power BI is a business analytics service by Microsoft that provides interactive visualizations and business intelligence capabilities with an interface simple enough for end-users to create their reports and dashboards.
2. Question: Differentiate between Power BI Desktop, Power BI Service, and Power BI Mobile.
Answer: Power BI Desktop is used for creating reports, Power BI Service (or Power BI Online) is the cloud service for sharing and collaborating on reports, and Power BI Mobile allows users to access reports on mobile devices.
3. Question: Explain the role of Power Query in Power BI.
Answer: Power Query is used for data transformation and shaping. It allows users to connect to various data sources, clean and transform data before loading it into Power BI for analysis.
4. Question: What is DAX in Power BI, and why is it important?
Answer: DAX (Data Analysis Expressions) is a formula language used for creating custom calculations in Power BI. It is important as it enables users to create sophisticated measures and calculated columns.
5. Question: How do you create relationships between tables in Power BI?
Answer: In Power BI Desktop, go to the "Model" view, drag and drop fields from one table to another to create relationships based on common keys.
6. Question: What is the difference between a calculated column and a measure in Power BI?
Answer: A calculated column is a column added to a table, computed row by row, while a measure is a formula applied to a set of data, providing a dynamic calculation based on the context.
7. Question: How can you implement row-level security in Power BI?
Answer: Row-level security in Power BI can be implemented by creating roles in Power BI Desktop and defining filters at the row level based on user roles.
8. Question: Explain the purpose of the Power BI Gateway.
Answer: The Power BI Gateway allows for a secure connection between Power BI services and on-premises data sources. It facilitates refreshing datasets and running scheduled refreshes.
9. Question: What is a Power BI dashboard?
Answer: A Power BI dashboard is a single-page, interactive view of your data that provides a consolidated and visualized summary of key metrics. It can include visuals, images, and live data.
10. Question: How can you share a Power BI report with others?
Answer: Power BI reports can be shared through the Power BI service. Publish the report to the Power BI service, and then share it with specific users or distribute it widely within an organization.
1. Question: What is Power BI?
Answer: Power BI is a business analytics service by Microsoft that provides interactive visualizations and business intelligence capabilities with an interface simple enough for end-users to create their reports and dashboards.
2. Question: Differentiate between Power BI Desktop, Power BI Service, and Power BI Mobile.
Answer: Power BI Desktop is used for creating reports, Power BI Service (or Power BI Online) is the cloud service for sharing and collaborating on reports, and Power BI Mobile allows users to access reports on mobile devices.
3. Question: Explain the role of Power Query in Power BI.
Answer: Power Query is used for data transformation and shaping. It allows users to connect to various data sources, clean and transform data before loading it into Power BI for analysis.
4. Question: What is DAX in Power BI, and why is it important?
Answer: DAX (Data Analysis Expressions) is a formula language used for creating custom calculations in Power BI. It is important as it enables users to create sophisticated measures and calculated columns.
5. Question: How do you create relationships between tables in Power BI?
Answer: In Power BI Desktop, go to the "Model" view, drag and drop fields from one table to another to create relationships based on common keys.
6. Question: What is the difference between a calculated column and a measure in Power BI?
Answer: A calculated column is a column added to a table, computed row by row, while a measure is a formula applied to a set of data, providing a dynamic calculation based on the context.
7. Question: How can you implement row-level security in Power BI?
Answer: Row-level security in Power BI can be implemented by creating roles in Power BI Desktop and defining filters at the row level based on user roles.
8. Question: Explain the purpose of the Power BI Gateway.
Answer: The Power BI Gateway allows for a secure connection between Power BI services and on-premises data sources. It facilitates refreshing datasets and running scheduled refreshes.
9. Question: What is a Power BI dashboard?
Answer: A Power BI dashboard is a single-page, interactive view of your data that provides a consolidated and visualized summary of key metrics. It can include visuals, images, and live data.
10. Question: How can you share a Power BI report with others?
Answer: Power BI reports can be shared through the Power BI service. Publish the report to the Power BI service, and then share it with specific users or distribute it widely within an organization.
โค1๐1
Forwarded from Python Projects & Resources
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ถ๐ป ๐๐๐๐ ๐ฏ ๐ ๐ผ๐ป๐๐ต๐ ๐๐ถ๐๐ต ๐ง๐ต๐ถ๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ถ๐๐๐๐ฏ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ๐
๐ฏ Want to Master Data Science in Just 3 Months?๐
Feeling overwhelmed by the sheer volume of resources and donโt know where to start? Youโre not alone๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43uHPrX
This FREE GitHub roadmap is a game-changer for anyoneโ ๏ธ
๐ฏ Want to Master Data Science in Just 3 Months?๐
Feeling overwhelmed by the sheer volume of resources and donโt know where to start? Youโre not alone๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43uHPrX
This FREE GitHub roadmap is a game-changer for anyoneโ ๏ธ
Data Analyst vs Data Engineer vs Data Scientist โ
Skills required to become a Data Analyst ๐
- Advanced Excel: Proficiency in Excel is crucial for data manipulation, analysis, and creating dashboards.
- SQL/Oracle: SQL is essential for querying databases to extract, manipulate, and analyze data.
- Python/R: Basic scripting knowledge in Python or R for data cleaning, analysis, and simple automations.
- Data Visualization: Tools like Power BI or Tableau for creating interactive reports and dashboards.
- Statistical Analysis: Understanding of basic statistical concepts to analyze data trends and patterns.
Skills required to become a Data Engineer: ๐
- Programming Languages: Strong skills in Python or Java for building data pipelines and processing data.
- SQL and NoSQL: Knowledge of relational databases (SQL) and non-relational databases (NoSQL) like Cassandra or MongoDB.
- Big Data Technologies: Proficiency in Hadoop, Hive, Pig, or Spark for processing and managing large data sets.
- Data Warehousing: Experience with tools like Amazon Redshift, Google BigQuery, or Snowflake for storing and querying large datasets.
- ETL Processes: Expertise in Extract, Transform, Load (ETL) tools and processes for data integration.
Skills required to become a Data Scientist: ๐
- Advanced Tools: Deep knowledge of R, Python, or SAS for statistical analysis and data modeling.
- Machine Learning Algorithms: Understanding and implementation of algorithms using libraries like scikit-learn, TensorFlow, and Keras.
- SQL and NoSQL: Ability to work with both structured and unstructured data using SQL and NoSQL databases.
- Data Wrangling & Preprocessing: Skills in cleaning, transforming, and preparing data for analysis.
- Statistical and Mathematical Modeling: Strong grasp of statistics, probability, and mathematical techniques for building predictive models.
- Cloud Computing: Familiarity with AWS, Azure, or Google Cloud for deploying machine learning models.
Bonus Skills Across All Roles:
- Data Visualization: Mastery in tools like Power BI and Tableau to visualize and communicate insights effectively.
- Advanced Statistics: Strong statistical foundation to interpret and validate data findings.
- Domain Knowledge: Industry-specific knowledge (e.g., finance, healthcare) to apply data insights in context.
- Communication Skills: Ability to explain complex technical concepts to non-technical stakeholders.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Skills required to become a Data Analyst ๐
- Advanced Excel: Proficiency in Excel is crucial for data manipulation, analysis, and creating dashboards.
- SQL/Oracle: SQL is essential for querying databases to extract, manipulate, and analyze data.
- Python/R: Basic scripting knowledge in Python or R for data cleaning, analysis, and simple automations.
- Data Visualization: Tools like Power BI or Tableau for creating interactive reports and dashboards.
- Statistical Analysis: Understanding of basic statistical concepts to analyze data trends and patterns.
Skills required to become a Data Engineer: ๐
- Programming Languages: Strong skills in Python or Java for building data pipelines and processing data.
- SQL and NoSQL: Knowledge of relational databases (SQL) and non-relational databases (NoSQL) like Cassandra or MongoDB.
- Big Data Technologies: Proficiency in Hadoop, Hive, Pig, or Spark for processing and managing large data sets.
- Data Warehousing: Experience with tools like Amazon Redshift, Google BigQuery, or Snowflake for storing and querying large datasets.
- ETL Processes: Expertise in Extract, Transform, Load (ETL) tools and processes for data integration.
Skills required to become a Data Scientist: ๐
- Advanced Tools: Deep knowledge of R, Python, or SAS for statistical analysis and data modeling.
- Machine Learning Algorithms: Understanding and implementation of algorithms using libraries like scikit-learn, TensorFlow, and Keras.
- SQL and NoSQL: Ability to work with both structured and unstructured data using SQL and NoSQL databases.
- Data Wrangling & Preprocessing: Skills in cleaning, transforming, and preparing data for analysis.
- Statistical and Mathematical Modeling: Strong grasp of statistics, probability, and mathematical techniques for building predictive models.
- Cloud Computing: Familiarity with AWS, Azure, or Google Cloud for deploying machine learning models.
Bonus Skills Across All Roles:
- Data Visualization: Mastery in tools like Power BI and Tableau to visualize and communicate insights effectively.
- Advanced Statistics: Strong statistical foundation to interpret and validate data findings.
- Domain Knowledge: Industry-specific knowledge (e.g., finance, healthcare) to apply data insights in context.
- Communication Skills: Ability to explain complex technical concepts to non-technical stakeholders.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค3
Forwarded from Artificial Intelligence
๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐๐ถ๐ฟ๐ถ๐ป๐ด ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐๐๐
๐๐ฝ๐ฝ๐น๐ ๐๐ถ๐ป๐ธ๐:-๐
S&P Global :- https://pdlink.in/3ZddwVz
IBM :- https://pdlink.in/4kDmMKE
TVS Credit :- https://pdlink.in/4mI0JVc
Sutherland :- https://pdlink.in/4mGYBgg
Other Jobs :- https://pdlink.in/44qEIDu
Apply before the link expires ๐ซ
๐๐ฝ๐ฝ๐น๐ ๐๐ถ๐ป๐ธ๐:-๐
S&P Global :- https://pdlink.in/3ZddwVz
IBM :- https://pdlink.in/4kDmMKE
TVS Credit :- https://pdlink.in/4mI0JVc
Sutherland :- https://pdlink.in/4mGYBgg
Other Jobs :- https://pdlink.in/44qEIDu
Apply before the link expires ๐ซ
30 Days Python Roadmap for Data Analysts ๐
โค2
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to Boost Your Resume with In-Demand Python Skills?๐จโ๐ป
In todayโs tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hnx3wh
Enjoy Learning โ ๏ธ
Want to Boost Your Resume with In-Demand Python Skills?๐จโ๐ป
In todayโs tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hnx3wh
Enjoy Learning โ ๏ธ
Hey guys!
Iโve been getting a lot of requests from you all asking for solid Data Analytics projects that can help you boost resume and build real skills.
So here you go โ
These arenโt just โfor practice,โ theyโre portfolio-worthy projects that show recruiters youโre ready for real-world work.
1. Sales Performance Dashboard
Tools: Excel / Power BI / Tableau
Youโll take raw sales data and turn it into a clean, interactive dashboard. Show key metrics like revenue, profit, top products, and regional trends.
Skills you build: Data cleaning, slicing & filtering, dashboard creation, business storytelling.
2. Customer Churn Analysis
Tools: Python (Pandas, Seaborn)
Work with a telecom or SaaS dataset to identify which customers are likely to leave and why.
Skills you build: Exploratory data analysis, visualization, correlation, and basic machine learning.
3. E-commerce Product Insights using SQL
Tools: SQL + Power BI
Analyze product categories, top-selling items, and revenue trends from a sample e-commerce dataset.
Skills you build: Joins, GROUP BY, aggregation, data modeling, and visual storytelling.
4. HR Analytics Dashboard
Tools: Excel / Power BI
Dive into employee data to find patterns in attrition, hiring trends, average salaries by department, etc.
Skills you build: Data summarization, calculated fields, visual formatting, DAX basics.
5. Movie Trends Analysis (Netflix or IMDb Dataset)
Tools: Python (Pandas, Matplotlib)
Explore trends across genres, ratings, and release years. Great for people who love entertainment and want to show creativity.
Skills you build: Data wrangling, time-series plots, filtering techniques.
6. Marketing Campaign Analysis
Tools: Excel / Power BI / SQL
Analyze data from a marketing campaign to measure ROI, conversion rates, and customer engagement. Identify which channels or strategies worked best and suggest improvements.
Skills you build: Data blending, KPI calculation, segmentation, and actionable insights.
7. Financial Expense Analysis & Budget Forecasting
Tools: Excel / Power BI / Python
Work on a companyโs expense data to analyze spending patterns, categorize expenses, and create a forecasting model to predict future budgets.
Skills you build: Time series analysis, forecasting, budgeting, and financial storytelling.
Pick 2โ3 projects. Donโt just show the final visuals โ explain your process on LinkedIn or GitHub. Thatโs what sets you apart.
Like for more useful content โค๏ธ
Iโve been getting a lot of requests from you all asking for solid Data Analytics projects that can help you boost resume and build real skills.
So here you go โ
These arenโt just โfor practice,โ theyโre portfolio-worthy projects that show recruiters youโre ready for real-world work.
1. Sales Performance Dashboard
Tools: Excel / Power BI / Tableau
Youโll take raw sales data and turn it into a clean, interactive dashboard. Show key metrics like revenue, profit, top products, and regional trends.
Skills you build: Data cleaning, slicing & filtering, dashboard creation, business storytelling.
2. Customer Churn Analysis
Tools: Python (Pandas, Seaborn)
Work with a telecom or SaaS dataset to identify which customers are likely to leave and why.
Skills you build: Exploratory data analysis, visualization, correlation, and basic machine learning.
3. E-commerce Product Insights using SQL
Tools: SQL + Power BI
Analyze product categories, top-selling items, and revenue trends from a sample e-commerce dataset.
Skills you build: Joins, GROUP BY, aggregation, data modeling, and visual storytelling.
4. HR Analytics Dashboard
Tools: Excel / Power BI
Dive into employee data to find patterns in attrition, hiring trends, average salaries by department, etc.
Skills you build: Data summarization, calculated fields, visual formatting, DAX basics.
5. Movie Trends Analysis (Netflix or IMDb Dataset)
Tools: Python (Pandas, Matplotlib)
Explore trends across genres, ratings, and release years. Great for people who love entertainment and want to show creativity.
Skills you build: Data wrangling, time-series plots, filtering techniques.
6. Marketing Campaign Analysis
Tools: Excel / Power BI / SQL
Analyze data from a marketing campaign to measure ROI, conversion rates, and customer engagement. Identify which channels or strategies worked best and suggest improvements.
Skills you build: Data blending, KPI calculation, segmentation, and actionable insights.
7. Financial Expense Analysis & Budget Forecasting
Tools: Excel / Power BI / Python
Work on a companyโs expense data to analyze spending patterns, categorize expenses, and create a forecasting model to predict future budgets.
Skills you build: Time series analysis, forecasting, budgeting, and financial storytelling.
Pick 2โ3 projects. Donโt just show the final visuals โ explain your process on LinkedIn or GitHub. Thatโs what sets you apart.
Like for more useful content โค๏ธ
โค5
Forwarded from Artificial Intelligence
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฒ ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐!๐
Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!๐จโ๐ป
No need for expensive coursesโstart learning for FREE today!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Ddxd7P
Donโt miss this opportunityโstart learning today and take your skills to the next level!โ ๏ธ
Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!๐จโ๐ป
No need for expensive coursesโstart learning for FREE today!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Ddxd7P
Donโt miss this opportunityโstart learning today and take your skills to the next level!โ ๏ธ