โ
๐-๐๐ญ๐๐ฉ ๐๐จ๐๐๐ฆ๐๐ฉ ๐ญ๐จ ๐๐ฐ๐ข๐ญ๐๐ก ๐ข๐ง๐ญ๐จ ๐ญ๐ก๐ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ ๐
๐ข๐๐ฅ๐โ
๐โโ๏ธ๐๐ฎ๐ข๐ฅ๐ ๐๐๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโExcel, SQL, Power BI, and Python.
๐โโ๏ธ๐๐๐ง๐๐ฌ-๐๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.
๐โโ๏ธ๐ ๐ข๐ง๐ ๐ ๐๐๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐ ). They can provide valuable insights, feedback, and keep you on track.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโs eye.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ข๐๐ ๐๐จ๐ซ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐โโ๏ธ๐๐ฎ๐ข๐ฅ๐ ๐๐๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโExcel, SQL, Power BI, and Python.
๐โโ๏ธ๐๐๐ง๐๐ฌ-๐๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.
๐โโ๏ธ๐ ๐ข๐ง๐ ๐ ๐๐๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐ ). They can provide valuable insights, feedback, and keep you on track.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโs eye.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ข๐๐ ๐๐จ๐ซ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐3
๐๐บ๐ฝ๐ฟ๐ฒ๐๐ ๐ฅ๐ฒ๐ฐ๐ฟ๐๐ถ๐๐ฒ๐ฟ๐ ๐๐ถ๐๐ต ๐ง๐ต๐ฒ๐๐ฒ ๐ฑ ๐ฆ๐ค๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐!๐
Want to land a data analytics job?
Showcase your SQL skills with real-world projects! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FJzJDu
Build your portfolio & stand out in job applications! Start todayโ ๏ธ
Want to land a data analytics job?
Showcase your SQL skills with real-world projects! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FJzJDu
Build your portfolio & stand out in job applications! Start todayโ ๏ธ
Prepare for GATE: The Right Time is NOW!
GeeksforGeeks brings you everything you need to crack GATE 2026 โ 900+ live hours, 300+ recorded sessions, and expert mentorship to keep you on track.
Whatโs inside?
โ Live & recorded classes with Indiaโs top educators
โ 200+ mock tests to track your progress
โ Study materials - PYQs, workbooks, formula book & more
โ 1:1 mentorship & AI doubt resolution for instant support
โ Interview prep for IITs & PSUs to help you land opportunities
Learn from Experts Like:
Satish Kumar Yadav โ Trained 20K+ students
Dr. Khaleel โ Ph.D. in CS, 29+ years of experience
Chandan Jha โ Ex-ISRO, AIR 23 in GATE
Vijay Kumar Agarwal โ M.Tech (NIT), 13+ years of experience
Sakshi Singhal โ IIT Roorkee, AIR 56 CSIR-NET
Shailendra Singh โ GATE 99.24 percentile
Devasane Mallesham โ IIT Bombay, 13+ years of experience
Use code UPSKILL30 to get an extra 30% OFF (Limited time only)
๐ Enroll for a free counseling session now: https://gfgcdn.com/tu/UI2/
GeeksforGeeks brings you everything you need to crack GATE 2026 โ 900+ live hours, 300+ recorded sessions, and expert mentorship to keep you on track.
Whatโs inside?
โ Live & recorded classes with Indiaโs top educators
โ 200+ mock tests to track your progress
โ Study materials - PYQs, workbooks, formula book & more
โ 1:1 mentorship & AI doubt resolution for instant support
โ Interview prep for IITs & PSUs to help you land opportunities
Learn from Experts Like:
Satish Kumar Yadav โ Trained 20K+ students
Dr. Khaleel โ Ph.D. in CS, 29+ years of experience
Chandan Jha โ Ex-ISRO, AIR 23 in GATE
Vijay Kumar Agarwal โ M.Tech (NIT), 13+ years of experience
Sakshi Singhal โ IIT Roorkee, AIR 56 CSIR-NET
Shailendra Singh โ GATE 99.24 percentile
Devasane Mallesham โ IIT Bombay, 13+ years of experience
Use code UPSKILL30 to get an extra 30% OFF (Limited time only)
๐ Enroll for a free counseling session now: https://gfgcdn.com/tu/UI2/
๐2
Free Datasets to practice data science projects
1. Enron Email Dataset
Data Link: https://www.cs.cmu.edu/~enron/
2. Chatbot Intents Dataset
Data Link: https://github.com/katanaml/katana-assistant/blob/master/mlbackend/intents.json
3. Flickr 30k Dataset
Data Link: https://www.kaggle.com/hsankesara/flickr-image-dataset
4. Parkinson Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/parkinsons
5. Iris Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/Iris
6. ImageNet dataset
Data Link: https://www.image-net.org/
7. Mall Customers Dataset
Data Link: https://www.kaggle.com/shwetabh123/mall-customers
8. Google Trends Data Portal
Data Link: https://trends.google.com/trends/
9. The Boston Housing Dataset
Data Link: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
10. Uber Pickups Dataset
Data Link: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
11. Recommender Systems Dataset
Data Link: https://cseweb.ucsd.edu/~jmcauley/datasets.html
Source Code: https://bit.ly/37iBDEp
12. UCI Spambase Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/Spambase
13. GTSRB (German traffic sign recognition benchmark) Dataset
Data Link: https://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
Source Code: https://bit.ly/39taSyH
14. Cityscapes Dataset
Data Link: https://www.cityscapes-dataset.com/
15. Kinetics Dataset
Data Link: https://deepmind.com/research/open-source/kinetics
16. IMDB-Wiki dataset
Data Link: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
17. Color Detection Dataset
Data Link: https://github.com/codebrainz/color-names/blob/master/output/colors.csv
18. Urban Sound 8K dataset
Data Link: https://urbansounddataset.weebly.com/urbansound8k.html
19. Librispeech Dataset
Data Link: https://www.openslr.org/12
20. Breast Histopathology Images Dataset
Data Link: https://www.kaggle.com/paultimothymooney/breast-histopathology-images
21. Youtube 8M Dataset
Data Link: https://research.google.com/youtube8m/
Join for more -> https://t.iss.one/dataportfolio
ENJOY LEARNING ๐๐
1. Enron Email Dataset
Data Link: https://www.cs.cmu.edu/~enron/
2. Chatbot Intents Dataset
Data Link: https://github.com/katanaml/katana-assistant/blob/master/mlbackend/intents.json
3. Flickr 30k Dataset
Data Link: https://www.kaggle.com/hsankesara/flickr-image-dataset
4. Parkinson Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/parkinsons
5. Iris Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/Iris
6. ImageNet dataset
Data Link: https://www.image-net.org/
7. Mall Customers Dataset
Data Link: https://www.kaggle.com/shwetabh123/mall-customers
8. Google Trends Data Portal
Data Link: https://trends.google.com/trends/
9. The Boston Housing Dataset
Data Link: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
10. Uber Pickups Dataset
Data Link: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
11. Recommender Systems Dataset
Data Link: https://cseweb.ucsd.edu/~jmcauley/datasets.html
Source Code: https://bit.ly/37iBDEp
12. UCI Spambase Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/Spambase
13. GTSRB (German traffic sign recognition benchmark) Dataset
Data Link: https://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
Source Code: https://bit.ly/39taSyH
14. Cityscapes Dataset
Data Link: https://www.cityscapes-dataset.com/
15. Kinetics Dataset
Data Link: https://deepmind.com/research/open-source/kinetics
16. IMDB-Wiki dataset
Data Link: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
17. Color Detection Dataset
Data Link: https://github.com/codebrainz/color-names/blob/master/output/colors.csv
18. Urban Sound 8K dataset
Data Link: https://urbansounddataset.weebly.com/urbansound8k.html
19. Librispeech Dataset
Data Link: https://www.openslr.org/12
20. Breast Histopathology Images Dataset
Data Link: https://www.kaggle.com/paultimothymooney/breast-histopathology-images
21. Youtube 8M Dataset
Data Link: https://research.google.com/youtube8m/
Join for more -> https://t.iss.one/dataportfolio
ENJOY LEARNING ๐๐
โค4๐1
๐๐๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Top Free Courses You Can Take Today
1๏ธโฃ Data Science Fundamentals
2๏ธโฃ AI & Machine Learning
3๏ธโฃ Python for Data Science
4๏ธโฃ Cloud Computing & Big Data
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/41Hy2hp
Enroll For FREE & Get Certified ๐
Top Free Courses You Can Take Today
1๏ธโฃ Data Science Fundamentals
2๏ธโฃ AI & Machine Learning
3๏ธโฃ Python for Data Science
4๏ธโฃ Cloud Computing & Big Data
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/41Hy2hp
Enroll For FREE & Get Certified ๐
๐2
๐๐ฒ๐๐ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Python is one of the most in-demand programming languages, used in data science, AI, web development, and automation.
Having a recognized Python certification can set you apart in the job market.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4c7hGDL
Enroll For FREE & Get Certified ๐
Python is one of the most in-demand programming languages, used in data science, AI, web development, and automation.
Having a recognized Python certification can set you apart in the job market.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4c7hGDL
Enroll For FREE & Get Certified ๐
โค2
Complete Data Analytics Mastery: From Basics to Advanced ๐
Begin your Data Analytics journey by mastering the fundamentals:
- Understanding Data Types and Formats
- Basics of Exploratory Data Analysis (EDA)
- Introduction to Data Cleaning Techniques
- Statistical Foundations for Data Analytics
- Data Visualization Essentials
Grasp these essentials in just a week to build a solid foundation in data analytics.
Once you're comfortable, dive into intermediate topics:
- Advanced Data Visualization (using tools like Tableau)
- Hypothesis Testing and A/B Testing
- Regression Analysis
- Time Series Analysis for Analytics
- SQL for Data Analytics
Take another week to solidify these skills and enhance your ability to draw meaningful insights from data.
Ready for the advanced level? Explore cutting-edge concepts:
- Machine Learning for Data Analytics
- Predictive Analytics
- Big Data Analytics (Hadoop, Spark)
- Advanced Statistical Methods (Multivariate Analysis)
- Data Ethics and Privacy in Analytics
These advanced concepts can be mastered in a couple of weeks with focused study and practice.
Remember, mastery comes with hands-on experience:
- Work on a simple data analytics project
- Tackle an intermediate-level analysis task
- Challenge yourself with an advanced analytics project involving real-world data sets
Consistent practice and application of analytics techniques are the keys to becoming a data analytics pro.
Best platforms to learn:
- Intro to Data Analysis
- Udacity's Data Analyst Nanodegree
- Intro to Data Visualisation
- SQL courses with Certificate
- Freecodecamp Python Course
- 365DataScience
- Data Analyst Resume Checklist
- SQL FREE Resources
Share your progress and insights with others in the data analytics community. Enjoy the fascinating journey into the realm of data analytics! ๐ฉโ๐ป๐จโ๐ป
Join @free4unow_backup for more free resources.
Like this post if it helps ๐โค๏ธ
ENJOY LEARNING ๐๐
Begin your Data Analytics journey by mastering the fundamentals:
- Understanding Data Types and Formats
- Basics of Exploratory Data Analysis (EDA)
- Introduction to Data Cleaning Techniques
- Statistical Foundations for Data Analytics
- Data Visualization Essentials
Grasp these essentials in just a week to build a solid foundation in data analytics.
Once you're comfortable, dive into intermediate topics:
- Advanced Data Visualization (using tools like Tableau)
- Hypothesis Testing and A/B Testing
- Regression Analysis
- Time Series Analysis for Analytics
- SQL for Data Analytics
Take another week to solidify these skills and enhance your ability to draw meaningful insights from data.
Ready for the advanced level? Explore cutting-edge concepts:
- Machine Learning for Data Analytics
- Predictive Analytics
- Big Data Analytics (Hadoop, Spark)
- Advanced Statistical Methods (Multivariate Analysis)
- Data Ethics and Privacy in Analytics
These advanced concepts can be mastered in a couple of weeks with focused study and practice.
Remember, mastery comes with hands-on experience:
- Work on a simple data analytics project
- Tackle an intermediate-level analysis task
- Challenge yourself with an advanced analytics project involving real-world data sets
Consistent practice and application of analytics techniques are the keys to becoming a data analytics pro.
Best platforms to learn:
- Intro to Data Analysis
- Udacity's Data Analyst Nanodegree
- Intro to Data Visualisation
- SQL courses with Certificate
- Freecodecamp Python Course
- 365DataScience
- Data Analyst Resume Checklist
- SQL FREE Resources
Share your progress and insights with others in the data analytics community. Enjoy the fascinating journey into the realm of data analytics! ๐ฉโ๐ป๐จโ๐ป
Join @free4unow_backup for more free resources.
Like this post if it helps ๐โค๏ธ
ENJOY LEARNING ๐๐
๐3
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ถ๐ฐ๐ธ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Looking to break into data analytics but donโt know where to start?๐
๐ The demand for data professionals is skyrocketing in 2025, & ๐๐ผ๐ ๐ฑ๐ผ๐ปโ๐ ๐ป๐ฒ๐ฒ๐ฑ ๐ฎ ๐ฑ๐ฒ๐ด๐ฟ๐ฒ๐ฒ ๐๐ผ ๐ด๐ฒ๐ ๐๐๐ฎ๐ฟ๐๐ฒ๐ฑ!๐จ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kLxe3N
๐ Start now and transform your career for FREE!
Looking to break into data analytics but donโt know where to start?๐
๐ The demand for data professionals is skyrocketing in 2025, & ๐๐ผ๐ ๐ฑ๐ผ๐ปโ๐ ๐ป๐ฒ๐ฒ๐ฑ ๐ฎ ๐ฑ๐ฒ๐ด๐ฟ๐ฒ๐ฒ ๐๐ผ ๐ด๐ฒ๐ ๐๐๐ฎ๐ฟ๐๐ฒ๐ฑ!๐จ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kLxe3N
๐ Start now and transform your career for FREE!
๐1
In a data science project, using multiple scalers can be beneficial when dealing with features that have different scales or distributions. Scaling is important in machine learning to ensure that all features contribute equally to the model training process and to prevent certain features from dominating others.
Here are some scenarios where using multiple scalers can be helpful in a data science project:
1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.
2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.
3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.
4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.
5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.
When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
Here are some scenarios where using multiple scalers can be helpful in a data science project:
1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.
2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.
3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.
4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.
5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.
When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
๐1
๐๐ผ๐ผ๐ด๐น๐ฒโ๐ ๐๐ฅ๐๐ ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐
Whether you want to become an AI Engineer, Data Scientist, or ML Researcher, this course gives you the foundational skills to start your journey.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4l2mq1s
Enroll For FREE & Get Certified ๐
Whether you want to become an AI Engineer, Data Scientist, or ML Researcher, this course gives you the foundational skills to start your journey.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4l2mq1s
Enroll For FREE & Get Certified ๐
๐2
Want to practice for your next interview?
Then use this prompt and ask Chat GPT to act as an interviewer ๐๐ (Tap to copy)
Now see how it goes. All the best for your preparation
Like this post if you need more content like this๐โค๏ธ
Then use this prompt and ask Chat GPT to act as an interviewer ๐๐ (Tap to copy)
I want you to act as an interviewer. I will be the
candidate and you will ask me the
interview questions for the position position. I
want you to only reply as the interviewer.
Do not write all the conservation at once. I
want you to only do the interview with me.
Ask me the questions and wait for my answers.
Do not write explanations. Ask me the
questions one by one like an interviewer does
and wait for my answers. My first
sentence is "Hi"Now see how it goes. All the best for your preparation
Like this post if you need more content like this๐โค๏ธ
๐2
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐, ๐๐ฒ๐๐ถ๐ด๐ป & ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐บ๐ฒ๐ป๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐!๐
Want to break into AI, UI/UX, or project management? ๐
These 5 beginner-friendly FREE courses will help you develop in-demand skills and boost your resume in 2025!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iV3dNf
โจ No cost, no catchโjust pure learning from anywhere!
Want to break into AI, UI/UX, or project management? ๐
These 5 beginner-friendly FREE courses will help you develop in-demand skills and boost your resume in 2025!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iV3dNf
โจ No cost, no catchโjust pure learning from anywhere!
Complete Syllabus for Data Analytics interview:
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting - Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals: Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
Like for more ๐โค๏ธ
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting - Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals: Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
Like for more ๐โค๏ธ
๐2โค1
๐๐ฃ ๐ ๐ผ๐ฟ๐ด๐ฎ๐ป ๐๐ฅ๐๐ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐
Want hands-on experience from a top global company without leaving your home?
These FREE virtual internship by JPMorgan on Forage let you explore careers in
โ Software Engineering
โ Investment Banking
โ Quantitative Research
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4kStNZi
Enroll For FREE & Get Certified ๐
Want hands-on experience from a top global company without leaving your home?
These FREE virtual internship by JPMorgan on Forage let you explore careers in
โ Software Engineering
โ Investment Banking
โ Quantitative Research
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4kStNZi
Enroll For FREE & Get Certified ๐
4 ways to run LLMs like DeepSeek-R1 locally on your computer:
Running LLMs locally is like having a superpower:
- Cost savings
- Privacy: Your data stays on your computer
- Plus, it's incredibly fun
Let us explore some of the best methods to achieve this.
1๏ธโฃ *Ollama*
* Running a model through Ollama is as simple as executing a command: ollama run deepseek-r1
* You can also install Ollama with a single command: curl -fsSL https:// ollama. com/install .sh | sh
2๏ธโฃ *LMStudio*
* Install LMStudio can be installed as an app on your computer.
* It offers a ChatGPT-like interface, allowing you to load and eject models as if you were handling tapes in a tape recorder.
3๏ธโฃ *vLLM*
* vLLM is a fast and easy-to-use library for LLM inference and serving.
* It has State-of-the-art serving throughput โก๏ธ
* A few lines of code and you can locally run DeepSeek as an OpenAI compatible server with reasoning enabled.
4๏ธโฃ *LlamaCPP (the OG)*
* LlamaCPP enables LLM inference with minimal setup and state-of-the-art performance.
Running LLMs locally is like having a superpower:
- Cost savings
- Privacy: Your data stays on your computer
- Plus, it's incredibly fun
Let us explore some of the best methods to achieve this.
1๏ธโฃ *Ollama*
* Running a model through Ollama is as simple as executing a command: ollama run deepseek-r1
* You can also install Ollama with a single command: curl -fsSL https:// ollama. com/install .sh | sh
2๏ธโฃ *LMStudio*
* Install LMStudio can be installed as an app on your computer.
* It offers a ChatGPT-like interface, allowing you to load and eject models as if you were handling tapes in a tape recorder.
3๏ธโฃ *vLLM*
* vLLM is a fast and easy-to-use library for LLM inference and serving.
* It has State-of-the-art serving throughput โก๏ธ
* A few lines of code and you can locally run DeepSeek as an OpenAI compatible server with reasoning enabled.
4๏ธโฃ *LlamaCPP (the OG)*
* LlamaCPP enables LLM inference with minimal setup and state-of-the-art performance.
๐1
๐ฆ๐๐ฟ๐๐ด๐ด๐น๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐? ๐ง๐ต๐ถ๐ ๐๐ต๐ฒ๐ฎ๐ ๐ฆ๐ต๐ฒ๐ฒ๐ ๐ถ๐ ๐ฌ๐ผ๐๐ฟ ๐จ๐น๐๐ถ๐บ๐ฎ๐๐ฒ ๐ฆ๐ต๐ผ๐ฟ๐๐ฐ๐๐!๐
Mastering Power BI can be overwhelming, but this cheat sheet by DataCamp makes it super easy! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ld6F7Y
No more flipping through tabs & tutorialsโjust pin this cheat sheet and analyze data like a pro!โ ๏ธ
Mastering Power BI can be overwhelming, but this cheat sheet by DataCamp makes it super easy! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ld6F7Y
No more flipping through tabs & tutorialsโjust pin this cheat sheet and analyze data like a pro!โ ๏ธ
Don't waste your lot of time when learning data analysis.
Here's how you may start your Data analysis journey
1๏ธโฃ - Avoid learning a programming language (e.g., SQL, R, or Python) for as long as possible.
This advice might seem strange coming from a former software engineer, so let me explain.
The vast majority of data analyses conducted each day worldwide are performed in the "solo analyst" scenario.
In this scenario, nobody cares about how the analysis was completed.
Only the results matter.
Also, the analysis methods (e.g., code) are rarely shared in this scenario.
Like for next steps
#dataanalysis
Here's how you may start your Data analysis journey
1๏ธโฃ - Avoid learning a programming language (e.g., SQL, R, or Python) for as long as possible.
This advice might seem strange coming from a former software engineer, so let me explain.
The vast majority of data analyses conducted each day worldwide are performed in the "solo analyst" scenario.
In this scenario, nobody cares about how the analysis was completed.
Only the results matter.
Also, the analysis methods (e.g., code) are rarely shared in this scenario.
Like for next steps
#dataanalysis
๐7
๐ญ๐ฌ๐ฌ% ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Master Python, Machine Learning, SQL, and Data Visualization with hands-on tutorials & real-world datasets? ๐ฏ
This 100% FREE resource from Kaggle will help you build job-ready skillsโno fluff, no fees, just pure learning!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3XYAnDy
Perfect for Beginners โ ๏ธ
Master Python, Machine Learning, SQL, and Data Visualization with hands-on tutorials & real-world datasets? ๐ฏ
This 100% FREE resource from Kaggle will help you build job-ready skillsโno fluff, no fees, just pure learning!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3XYAnDy
Perfect for Beginners โ ๏ธ