๐ฒ ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฆ๐ค๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ (๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ๐๐ฒ๐๐!)๐
๐ฏ Want to level up your SQL skills with real business scenarios?๐
These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/40kF1x0
Save this post โ even completing 1 project can power up your SQL profile!โ ๏ธ
๐ฏ Want to level up your SQL skills with real business scenarios?๐
These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/40kF1x0
Save this post โ even completing 1 project can power up your SQL profile!โ ๏ธ
Data Analytics Roadmap
1. Fundamentals of Statistics and Mathematics
- Understand descriptive statistics: mean, median, mode, variance, standard deviation.
- Basics of probability theory.
- Hypothesis testing and statistical inference.
- Some linear algebra and calculus basics (optional depending on needs).
2. Learn Excel and Google Sheets
- Master spreadsheet basics: formulas, functions, pivot tables.
- Data visualization with charts and graphs.
- Basic automation with macros and advanced formulas.
3. Programming for Data Analytics
- Choose Python or R as your main analytical programming language.
- Python libraries: pandas (data manipulation), numpy (numerical operations), matplotlib and seaborn (visualization).
- For R: dplyr, ggplot2.
- Use Jupyter Notebook (Python) or RStudio for coding environment.
4. Databases and SQL
- Understand relational databases and how data is stored.
- Learn SQL queries: SELECT, JOIN, GROUP BY, aggregation functions.
- Practice querying real databases.
5. Data Visualization Tools
- Learn tools like Tableau, Power BI, or Looker.
- Build interactive dashboards and reports.
- Understand best practices for effective visualization (color, simplicity, clarity).
6. Business Analytics Fundamentals
- Understand business processes and workflows.
- Define Key Performance Indicators (KPIs).
- Translate business questions into analytical problems.
7. Data Cleaning and Preprocessing
- Handle missing, inconsistent, and outlier data.
- Data transformation and normalization techniques.
- Use Python (pandas) or other tools to clean data effectively.
8. Basics of Machine Learning (Optional for Advanced Skills)
- Understand simple models: linear regression, classification.
- Use scikit-learn library in Python.
- Apply models for forecasting and clustering.
9. Hands-on Practice and Projects
- Work on real datasets from Kaggle or other platforms.
- Build a portfolio showcasing your data analysis projects.
- Participate in data competitions and hackathons.
10. Communication and Reporting
- Develop skills in presenting data insights clearly.
- Create compelling reports and presentations.
- Learn to work with stakeholders to tailor insights.
Share with credits: https://t.iss.one/sqlspecialist
React โฅ๏ธ for more
1. Fundamentals of Statistics and Mathematics
- Understand descriptive statistics: mean, median, mode, variance, standard deviation.
- Basics of probability theory.
- Hypothesis testing and statistical inference.
- Some linear algebra and calculus basics (optional depending on needs).
2. Learn Excel and Google Sheets
- Master spreadsheet basics: formulas, functions, pivot tables.
- Data visualization with charts and graphs.
- Basic automation with macros and advanced formulas.
3. Programming for Data Analytics
- Choose Python or R as your main analytical programming language.
- Python libraries: pandas (data manipulation), numpy (numerical operations), matplotlib and seaborn (visualization).
- For R: dplyr, ggplot2.
- Use Jupyter Notebook (Python) or RStudio for coding environment.
4. Databases and SQL
- Understand relational databases and how data is stored.
- Learn SQL queries: SELECT, JOIN, GROUP BY, aggregation functions.
- Practice querying real databases.
5. Data Visualization Tools
- Learn tools like Tableau, Power BI, or Looker.
- Build interactive dashboards and reports.
- Understand best practices for effective visualization (color, simplicity, clarity).
6. Business Analytics Fundamentals
- Understand business processes and workflows.
- Define Key Performance Indicators (KPIs).
- Translate business questions into analytical problems.
7. Data Cleaning and Preprocessing
- Handle missing, inconsistent, and outlier data.
- Data transformation and normalization techniques.
- Use Python (pandas) or other tools to clean data effectively.
8. Basics of Machine Learning (Optional for Advanced Skills)
- Understand simple models: linear regression, classification.
- Use scikit-learn library in Python.
- Apply models for forecasting and clustering.
9. Hands-on Practice and Projects
- Work on real datasets from Kaggle or other platforms.
- Build a portfolio showcasing your data analysis projects.
- Participate in data competitions and hackathons.
10. Communication and Reporting
- Develop skills in presenting data insights clearly.
- Create compelling reports and presentations.
- Learn to work with stakeholders to tailor insights.
Share with credits: https://t.iss.one/sqlspecialist
React โฅ๏ธ for more
โค2
๐ฒ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ & ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐ป๐ฒ๐๐
Want to break into Data Science & Analytics but donโt want to spend on expensive courses?๐จโ๐ป
Start here โ with 100% FREE courses from Cisco, IBM, Google & LinkedIn, all with certificates you can showcase on LinkedIn or your resume!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Ix2oxd
This list will set you up with real-world, job-ready skillsโ ๏ธ
Want to break into Data Science & Analytics but donโt want to spend on expensive courses?๐จโ๐ป
Start here โ with 100% FREE courses from Cisco, IBM, Google & LinkedIn, all with certificates you can showcase on LinkedIn or your resume!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Ix2oxd
This list will set you up with real-world, job-ready skillsโ ๏ธ
โค2
There are several AI tools and libraries available to assist with coding in Python. Here are some of the most popular ones:
1. GitHub Copilot: An AI-powered code completion tool developed by GitHub and OpenAI. It can suggest entire lines or blocks of code based on the context of what you're writing.
2. Tabnine: An AI code completion tool that supports various IDEs and code editors. It uses deep learning models to predict and suggest code completions.
3. Kite: An AI-powered code completion and documentation tool that integrates with many popular IDEs. It offers in-line code completions and documentation for Python.
4. PyCharm's Code Completion: JetBrains' PyCharm IDE comes with advanced code completion features, which are enhanced by AI to provide context-aware suggestions.
5. Jupyter Notebooks with AI Integration: Jupyter notebooks can integrate with various AI tools and libraries for code completion and suggestions, like JupyterLab Code Formatter or extensions that integrate with AI models.
6. DeepCode: An AI-based code review tool that helps identify and fix bugs, security vulnerabilities, and code quality issues.
7. IntelliCode: An extension for Visual Studio Code that uses AI to provide code suggestions and improve productivity.
8. Codota: An AI-powered code suggestion tool that integrates with many IDEs and provides context-aware code completions.
9. Repl.it Ghostwriter: An AI-powered code completion tool available in the Repl.it online coding environment.
Join for more: https://t.iss.one/machinelearning_deeplearning
1. GitHub Copilot: An AI-powered code completion tool developed by GitHub and OpenAI. It can suggest entire lines or blocks of code based on the context of what you're writing.
2. Tabnine: An AI code completion tool that supports various IDEs and code editors. It uses deep learning models to predict and suggest code completions.
3. Kite: An AI-powered code completion and documentation tool that integrates with many popular IDEs. It offers in-line code completions and documentation for Python.
4. PyCharm's Code Completion: JetBrains' PyCharm IDE comes with advanced code completion features, which are enhanced by AI to provide context-aware suggestions.
5. Jupyter Notebooks with AI Integration: Jupyter notebooks can integrate with various AI tools and libraries for code completion and suggestions, like JupyterLab Code Formatter or extensions that integrate with AI models.
6. DeepCode: An AI-based code review tool that helps identify and fix bugs, security vulnerabilities, and code quality issues.
7. IntelliCode: An extension for Visual Studio Code that uses AI to provide code suggestions and improve productivity.
8. Codota: An AI-powered code suggestion tool that integrates with many IDEs and provides context-aware code completions.
9. Repl.it Ghostwriter: An AI-powered code completion tool available in the Repl.it online coding environment.
Join for more: https://t.iss.one/machinelearning_deeplearning
โค1
Forwarded from Artificial Intelligence
๐๐ฟ๐ฎ๐ฐ๐ธ ๐๐๐๐ก๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ โ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐!๐
If youโre serious about cracking top tech interviews โ from FAANG to startups โ this is the roadmap you canโt afford to miss๐
Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ completely free๐คฉ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3TJlpyW
Your dream job might just start here.โ ๏ธ
If youโre serious about cracking top tech interviews โ from FAANG to startups โ this is the roadmap you canโt afford to miss๐
Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ completely free๐คฉ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3TJlpyW
Your dream job might just start here.โ ๏ธ
โค1
Forwarded from Python Projects & Resources
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to break into data science in 2025โwithout spending a single rupee?๐ฐ๐จโ๐ป
Youโre in luck! Microsoft is offering powerful, beginner-friendly resources that teach you everything from Python fundamentals to AI and data analyticsโfor free๐คฉโ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vCIrb
Level up your career in the booming field of dataโ ๏ธ
Want to break into data science in 2025โwithout spending a single rupee?๐ฐ๐จโ๐ป
Youโre in luck! Microsoft is offering powerful, beginner-friendly resources that teach you everything from Python fundamentals to AI and data analyticsโfor free๐คฉโ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vCIrb
Level up your career in the booming field of dataโ ๏ธ
โค1
๐ฐ ๐ ๐๐๐-๐ช๐ฎ๐๐ฐ๐ต ๐ฌ๐ผ๐๐ง๐๐ฏ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ผ๐ฟ ๐๐๐ฒ๐ฟ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฆ๐๐๐ฑ๐ฒ๐ป๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
If youโre starting your data analytics journey, these 4 YouTube courses are pure gold โ and the best part? ๐ป๐คฉ
Theyโre completely free๐ฅ๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44DvNP1
Each course can help you build the right foundation for a successful tech careerโ ๏ธ
If youโre starting your data analytics journey, these 4 YouTube courses are pure gold โ and the best part? ๐ป๐คฉ
Theyโre completely free๐ฅ๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44DvNP1
Each course can help you build the right foundation for a successful tech careerโ ๏ธ
โค1
๐ฒ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ฟ๐ผ๐บ ๐ง๐ผ๐ฝ ๐ข๐ฟ๐ด๐ฎ๐ป๐ถ๐๐ฎ๐๐ถ๐ผ๐ป๐ ๐
A power-packed selection of 100% free, certified courses from top institutions:
- Data Analytics โ Cisco
- Digital Marketing โ Google
- Python for AI โ IBM/edX
- SQL & Databases โ Stanford
- Generative AI โ Google Cloud
- Machine Learning โ Harvard
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3FcwrZK
Master inโdemand tech skills with these 6 certified, top-tier free courses
A power-packed selection of 100% free, certified courses from top institutions:
- Data Analytics โ Cisco
- Digital Marketing โ Google
- Python for AI โ IBM/edX
- SQL & Databases โ Stanford
- Generative AI โ Google Cloud
- Machine Learning โ Harvard
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3FcwrZK
Master inโdemand tech skills with these 6 certified, top-tier free courses
โค4
As a data analyst, your focus isn't on creating dashboards, writing SQL queries, doing pivot tables, generating reports, or cleaning data.
Your focus should be solving business problems using these skills
- Donโt just write SQLโask why you're querying that data and what decision it will influence.
- Donโt just build a dashboardโask who will use it and how it will help them take action.
- Donโt just clean dataโknow what insight lies beneath the mess.
- Donโt just report metricsโask what story theyโre telling and what recommendation can follow.
Your focus should be solving business problems using these skills
- Donโt just write SQLโask why you're querying that data and what decision it will influence.
- Donโt just build a dashboardโask who will use it and how it will help them take action.
- Donโt just clean dataโknow what insight lies beneath the mess.
- Donโt just report metricsโask what story theyโre telling and what recommendation can follow.
โค2
๐ ๐ณ ๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ + ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Gain globally recognized skills with Microsoft x LinkedIn Career Essentials โ completely FREE!
๐ฏ Top Certifications:
๐น Generative AI
๐น Data Analysis
๐น Software Development
๐น Project Management
๐น Business Analysis
๐น System Administration
๐น Administrative Assistance
๐ 100% Free | Self-Paced | Industry-Aligned
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/46TZP2h
๐ผ Perfect for students, freshers & working professionals
Gain globally recognized skills with Microsoft x LinkedIn Career Essentials โ completely FREE!
๐ฏ Top Certifications:
๐น Generative AI
๐น Data Analysis
๐น Software Development
๐น Project Management
๐น Business Analysis
๐น System Administration
๐น Administrative Assistance
๐ 100% Free | Self-Paced | Industry-Aligned
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/46TZP2h
๐ผ Perfect for students, freshers & working professionals
โค1
๐ง๐ถ๐ฟ๐ฒ๐ฑ ๐ผ๐ณ ๐๐๐ฟ๐๐ด๐ด๐น๐ถ๐ป๐ด ๐๐ผ ๐ณ๐ถ๐ป๐ฑ ๐ด๐ผ๐ผ๐ฑ ๐๐/๐ ๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐ฝ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ?๐
Stop wasting hours searching โ hereโs a GOLDMINE ๐
โ 500+ Real-World Projects with Code
โ Covers NLP, Computer Vision, Deep Learning, ML Pipelines
โ Beginner to Advanced Levels
โ Resume-Worthy, Interview-Ready!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45gTMU8
โจSave this. Share this. Start building.โ ๏ธ
Stop wasting hours searching โ hereโs a GOLDMINE ๐
โ 500+ Real-World Projects with Code
โ Covers NLP, Computer Vision, Deep Learning, ML Pipelines
โ Beginner to Advanced Levels
โ Resume-Worthy, Interview-Ready!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45gTMU8
โจSave this. Share this. Start building.โ ๏ธ
โค2
Use Chat GPT to prepare for your next Interview
This could be the most helpful thing for people aspiring for new jobs.
A few prompts that can help you here are:
๐กPrompt 1: Here is a Job description of a job I am looking to apply for. Can you tell me what skills and questions should I prepare for? {Paste JD}
๐กPrompt 2: Here is my resume. Can you tell me what optimization I can do to make it more likely to get selected for this interview? {Paste Resume in text}
๐กPrompt 3: Act as an Interviewer for the role of a {product manager} at {Company}. Ask me 5 questions one by one, wait for my response, and then tell me how I did. You should give feedback in the following format: What was good, where are the gaps, and how to address the gaps?
๐กPrompt 4: I am interviewing for this job given in the JD. Can you help me understand the company, its role, its products, main competitors, and challenges for the company?
๐กPrompt 5: What are the few questions I should ask at the end of the interview which can help me learn about the culture of the company?
Free book to master ChatGPT: https://t.iss.one/InterviewBooks/166
ENJOY LEARNING ๐๐
This could be the most helpful thing for people aspiring for new jobs.
A few prompts that can help you here are:
๐กPrompt 1: Here is a Job description of a job I am looking to apply for. Can you tell me what skills and questions should I prepare for? {Paste JD}
๐กPrompt 2: Here is my resume. Can you tell me what optimization I can do to make it more likely to get selected for this interview? {Paste Resume in text}
๐กPrompt 3: Act as an Interviewer for the role of a {product manager} at {Company}. Ask me 5 questions one by one, wait for my response, and then tell me how I did. You should give feedback in the following format: What was good, where are the gaps, and how to address the gaps?
๐กPrompt 4: I am interviewing for this job given in the JD. Can you help me understand the company, its role, its products, main competitors, and challenges for the company?
๐กPrompt 5: What are the few questions I should ask at the end of the interview which can help me learn about the culture of the company?
Free book to master ChatGPT: https://t.iss.one/InterviewBooks/166
ENJOY LEARNING ๐๐
โค2๐1
Forwarded from Artificial Intelligence
๐ฑ ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ง๐ฒ๐ฐ๐ต ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐๐๐ถ๐น๐ฑ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ โ ๐ช๐ถ๐๐ต ๐๐๐น๐น ๐ง๐๐๐ผ๐ฟ๐ถ๐ฎ๐น๐!๐
Are you ready to build real-world tech projects that donโt just look good on your resume, but actually teach you practical, job-ready skills?๐งโ๐ป๐
Hereโs a curated list of 5 high-value development tutorials โ covering everything from full-stack development and real-time chat apps to AI form builders and reinforcement learningโจ๏ธ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3UtCSLO
Theyโre real, portfolio-worthy projects you can start todayโ ๏ธ
Are you ready to build real-world tech projects that donโt just look good on your resume, but actually teach you practical, job-ready skills?๐งโ๐ป๐
Hereโs a curated list of 5 high-value development tutorials โ covering everything from full-stack development and real-time chat apps to AI form builders and reinforcement learningโจ๏ธ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3UtCSLO
Theyโre real, portfolio-worthy projects you can start todayโ ๏ธ
โค2
Complete Syllabus for Data Analytics interview:
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting
- Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting
- Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
โค2
Essential Programming Languages to Learn Data Science ๐๐
1. Python: Python is one of the most popular programming languages for data science due to its simplicity, versatility, and extensive library support (such as NumPy, Pandas, and Scikit-learn).
2. R: R is another popular language for data science, particularly in academia and research settings. It has powerful statistical analysis capabilities and a wide range of packages for data manipulation and visualization.
3. SQL: SQL (Structured Query Language) is essential for working with databases, which are a critical component of data science projects. Knowledge of SQL is necessary for querying and manipulating data stored in relational databases.
4. Java: Java is a versatile language that is widely used in enterprise applications and big data processing frameworks like Apache Hadoop and Apache Spark. Knowledge of Java can be beneficial for working with large-scale data processing systems.
5. Scala: Scala is a functional programming language that is often used in conjunction with Apache Spark for distributed data processing. Knowledge of Scala can be valuable for building high-performance data processing applications.
6. Julia: Julia is a high-performance language specifically designed for scientific computing and data analysis. It is gaining popularity in the data science community due to its speed and ease of use for numerical computations.
7. MATLAB: MATLAB is a proprietary programming language commonly used in engineering and scientific research for data analysis, visualization, and modeling. It is particularly useful for signal processing and image analysis tasks.
Free Resources to master data analytics concepts ๐๐
Data Analysis with R
Intro to Data Science
Practical Python Programming
SQL for Data Analysis
Java Essential Concepts
Machine Learning with Python
Data Science Project Ideas
Learning SQL FREE Book
Join @free4unow_backup for more free resources.
ENJOY LEARNING๐๐
1. Python: Python is one of the most popular programming languages for data science due to its simplicity, versatility, and extensive library support (such as NumPy, Pandas, and Scikit-learn).
2. R: R is another popular language for data science, particularly in academia and research settings. It has powerful statistical analysis capabilities and a wide range of packages for data manipulation and visualization.
3. SQL: SQL (Structured Query Language) is essential for working with databases, which are a critical component of data science projects. Knowledge of SQL is necessary for querying and manipulating data stored in relational databases.
4. Java: Java is a versatile language that is widely used in enterprise applications and big data processing frameworks like Apache Hadoop and Apache Spark. Knowledge of Java can be beneficial for working with large-scale data processing systems.
5. Scala: Scala is a functional programming language that is often used in conjunction with Apache Spark for distributed data processing. Knowledge of Scala can be valuable for building high-performance data processing applications.
6. Julia: Julia is a high-performance language specifically designed for scientific computing and data analysis. It is gaining popularity in the data science community due to its speed and ease of use for numerical computations.
7. MATLAB: MATLAB is a proprietary programming language commonly used in engineering and scientific research for data analysis, visualization, and modeling. It is particularly useful for signal processing and image analysis tasks.
Free Resources to master data analytics concepts ๐๐
Data Analysis with R
Intro to Data Science
Practical Python Programming
SQL for Data Analysis
Java Essential Concepts
Machine Learning with Python
Data Science Project Ideas
Learning SQL FREE Book
Join @free4unow_backup for more free resources.
ENJOY LEARNING๐๐
โค1