Forwarded from Python Projects & Resources
๐ช๐ถ๐ฝ๐ฟ๐ผโ๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฐ๐ฐ๐ฒ๐น๐ฒ๐ฟ๐ฎ๐๐ผ๐ฟ: ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐-๐ง๐ฟ๐ฎ๐ฐ๐ธ ๐๐ผ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ!๐
Want to break into Data Science but donโt have a degree or years of experience? Wipro just made it easier than ever!๐จโ๐โจ๏ธ
With the Wipro Data Science Accelerator, you can start learning for FREEโno fancy credentials needed. Whether youโre a beginner or an aspiring data professional๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hOXcR7
Ready to start? Explore Wiproโs Data Science Accelerator hereโ ๏ธ
Want to break into Data Science but donโt have a degree or years of experience? Wipro just made it easier than ever!๐จโ๐โจ๏ธ
With the Wipro Data Science Accelerator, you can start learning for FREEโno fancy credentials needed. Whether youโre a beginner or an aspiring data professional๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hOXcR7
Ready to start? Explore Wiproโs Data Science Accelerator hereโ ๏ธ
SQL Joins: Unlock the Secrets Data Aficionado's
โ๏ธ SQL joins are the secret ingredients that bring your data feast together, they are the backbone of relational database querying, allowing us to combine data from multiple tables.
โ Let's explore the various types of joins and their applications:
1. INNER JOIN
- Returns only the matching rows from both tables
- Use case: Finding common data points, e.g., customers who have made purchases
2. LEFT JOIN
- Returns all rows from the left table and matching rows from the right table
- Use case: Retrieving all customers and their orders, including those who haven't made any purchases
3. RIGHT JOIN
- Returns all rows from the right table and matching rows from the left table
- Use case: Finding all orders and their corresponding customers, including orders without customer data
4. FULL OUTER JOIN
- Returns all rows from both tables, with NULL values where there's no match
- Use case: Comprehensive view of all data, identifying gaps in relationships
5. CROSS JOIN
- Returns the Cartesian product of both tables
- Use case: Generating all possible combinations, e.g., product variations
6. SELF JOIN
- Joins a table with itself
- Use case: Hierarchical data, finding relationships within the same table
๐ Advanced Join Techniques
1. UNION and UNION ALL
- Combines result sets of multiple queries
- UNION removes duplicates, UNION ALL keeps them
- Use case: Merging data from similar structures
2. Joins with NULL Checks
- Useful for handling missing data or exclusions
๐ก SQL Best Practices for Optimal Performance
1. Use Appropriate Indexes : Create indexes on join columns and frequently filtered fields.
2. Leverage Subqueries: Simplify complex queries and improve readability.
3. Utilize Common Table Expressions (CTEs): Enhance query structure and reusability.
4. Employ Window Functions: For advanced analytics without complex joins.
5. Optimize Query Plans: Analyze and tune execution plans for better performance.
6. Master Regular Expressions: For powerful pattern matching and data manipulation.
โ๏ธ SQL joins are the secret ingredients that bring your data feast together, they are the backbone of relational database querying, allowing us to combine data from multiple tables.
โ Let's explore the various types of joins and their applications:
1. INNER JOIN
- Returns only the matching rows from both tables
- Use case: Finding common data points, e.g., customers who have made purchases
2. LEFT JOIN
- Returns all rows from the left table and matching rows from the right table
- Use case: Retrieving all customers and their orders, including those who haven't made any purchases
3. RIGHT JOIN
- Returns all rows from the right table and matching rows from the left table
- Use case: Finding all orders and their corresponding customers, including orders without customer data
4. FULL OUTER JOIN
- Returns all rows from both tables, with NULL values where there's no match
- Use case: Comprehensive view of all data, identifying gaps in relationships
5. CROSS JOIN
- Returns the Cartesian product of both tables
- Use case: Generating all possible combinations, e.g., product variations
6. SELF JOIN
- Joins a table with itself
- Use case: Hierarchical data, finding relationships within the same table
๐ Advanced Join Techniques
1. UNION and UNION ALL
- Combines result sets of multiple queries
- UNION removes duplicates, UNION ALL keeps them
- Use case: Merging data from similar structures
2. Joins with NULL Checks
- Useful for handling missing data or exclusions
๐ก SQL Best Practices for Optimal Performance
1. Use Appropriate Indexes : Create indexes on join columns and frequently filtered fields.
2. Leverage Subqueries: Simplify complex queries and improve readability.
3. Utilize Common Table Expressions (CTEs): Enhance query structure and reusability.
4. Employ Window Functions: For advanced analytics without complex joins.
5. Optimize Query Plans: Analyze and tune execution plans for better performance.
6. Master Regular Expressions: For powerful pattern matching and data manipulation.
โค1
Forwarded from Python Projects & Resources
๐๐ถ๐ฑ๐ฑ๐ฒ๐ป ๐๐ฒ๐บ ๐ณ๐ผ๐ฟ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ฟ๐ผ๐บ ๐ ๐๐ง, ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ!๐
Still searching for quality learning resources?๐
What if I told you thereโs a platform offering free full-length courses from top universities like MIT, Stanford, and Harvard โ and most people have never even heard of it? ๐คฏ
๐๐ถ๐ป๐ธ๐:-๐
https://pdlink.in/4lN7aF1
Donโt skip this chanceโ ๏ธ
Still searching for quality learning resources?๐
What if I told you thereโs a platform offering free full-length courses from top universities like MIT, Stanford, and Harvard โ and most people have never even heard of it? ๐คฏ
๐๐ถ๐ป๐ธ๐:-๐
https://pdlink.in/4lN7aF1
Donโt skip this chanceโ ๏ธ
โค1
Essential Skills to Master for Using Generative AI
1๏ธโฃ Prompt Engineering
โ๏ธ Learn how to craft clear, detailed prompts to get accurate AI-generated results.
2๏ธโฃ Data Literacy
๐ Understand data sources, biases, and how AI models process information.
3๏ธโฃ AI Ethics & Responsible Usage
โ๏ธ Know the ethical implications of AI, including bias, misinformation, and copyright issues.
4๏ธโฃ Creativity & Critical Thinking
๐ก AI enhances creativity, but human intuition is key for quality content.
5๏ธโฃ AI Tool Familiarity
๐ Get hands-on experience with tools like ChatGPT, DALLยทE, Midjourney, and Runway ML.
6๏ธโฃ Coding Basics (Optional)
๐ป Knowing Python, SQL, or APIs helps customize AI workflows and automation.
7๏ธโฃ Business & Marketing Awareness
๐ข Leverage AI for automation, branding, and customer engagement.
8๏ธโฃ Cybersecurity & Privacy Knowledge
๐ Learn how AI-generated data can be misused and ways to protect sensitive information.
9๏ธโฃ Adaptability & Continuous Learning
๐ AI evolves fastโstay updated with new trends, tools, and regulations.
Master these skills to make the most of AI in your personal and professional life! ๐ฅ
Free Generative AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
1๏ธโฃ Prompt Engineering
โ๏ธ Learn how to craft clear, detailed prompts to get accurate AI-generated results.
2๏ธโฃ Data Literacy
๐ Understand data sources, biases, and how AI models process information.
3๏ธโฃ AI Ethics & Responsible Usage
โ๏ธ Know the ethical implications of AI, including bias, misinformation, and copyright issues.
4๏ธโฃ Creativity & Critical Thinking
๐ก AI enhances creativity, but human intuition is key for quality content.
5๏ธโฃ AI Tool Familiarity
๐ Get hands-on experience with tools like ChatGPT, DALLยทE, Midjourney, and Runway ML.
6๏ธโฃ Coding Basics (Optional)
๐ป Knowing Python, SQL, or APIs helps customize AI workflows and automation.
7๏ธโฃ Business & Marketing Awareness
๐ข Leverage AI for automation, branding, and customer engagement.
8๏ธโฃ Cybersecurity & Privacy Knowledge
๐ Learn how AI-generated data can be misused and ways to protect sensitive information.
9๏ธโฃ Adaptability & Continuous Learning
๐ AI evolves fastโstay updated with new trends, tools, and regulations.
Master these skills to make the most of AI in your personal and professional life! ๐ฅ
Free Generative AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
โค1
๐ฏ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ!๐
Want to break into Data Analytics but donโt know where to start? ๐ค
These 3 beginner-friendly and 100% FREE courses will help you build real skills โ no degree required!๐จโ๐
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/3IohnJO
No confusion, no fluff โ just pure valueโ ๏ธ
Want to break into Data Analytics but donโt know where to start? ๐ค
These 3 beginner-friendly and 100% FREE courses will help you build real skills โ no degree required!๐จโ๐
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/3IohnJO
No confusion, no fluff โ just pure valueโ ๏ธ
Power BI Scenario based Questions ๐๐
๐ Scenario 1:Question: Imagine you need to visualize year-over-year growth in product sales. What approach would you take to calculate and present this information effectively in Power BI?
Answer: To visualize year-over-year growth in product sales, I would first calculate the sales for each product for the current year and the previous year using DAX measures in Power BI. Then, I would create a line chart visual where the x-axis represents the months or quarters, and the y-axis represents the sales amount. I would plot two lines on the chart, one for the current year's sales and one for the previous year's sales, allowing stakeholders to easily compare the growth trends over time.
๐ Scenario 2: Question: You're working with a dataset that requires extensive data cleaning and transformation before analysis. Describe your process for cleaning and preparing the data in Power BI, ensuring accuracy and efficiency.
Answer: For cleaning and preparing the dataset in Power BI, I would start by identifying and addressing missing or duplicate values, outliers, and inconsistencies in data formats. I would use Power Query Editor to perform data cleaning operations such as removing null values, renaming columns, and applying transformations like data type conversion and standardization. Additionally, I would create calculated columns or measures as needed to derive new insights from the cleaned data.
๐ Scenario 3: Question: Your organization wants to incorporate real-time data updates into their Power BI reports. How would you set up and manage live data connections in Power BI to ensure timely insights?
Answer: To incorporate real-time data updates into Power BI reports, I would utilize Power BI's streaming datasets feature. I would set up a data streaming connection to the source system, such as a database or API, and configure the dataset to receive real-time data updates at specified intervals. Then, I would design reports and visuals based on the streaming dataset, enabling stakeholders to view and analyze the latest data as it is updated in real-time.
โก Scenario 4: Question: You've noticed that your Power BI reports are taking longer to load and refresh than usual. How would you diagnose and address performance issues to optimize report performance?
Answer: If Power BI reports are experiencing performance issues, I would first identify potential bottlenecks by analyzing factors such as data volume, query complexity, and visual design. Then, I would optimize report performance by applying techniques such as data model optimization, query optimization, and visualization best practices.
๐ Scenario 1:Question: Imagine you need to visualize year-over-year growth in product sales. What approach would you take to calculate and present this information effectively in Power BI?
Answer: To visualize year-over-year growth in product sales, I would first calculate the sales for each product for the current year and the previous year using DAX measures in Power BI. Then, I would create a line chart visual where the x-axis represents the months or quarters, and the y-axis represents the sales amount. I would plot two lines on the chart, one for the current year's sales and one for the previous year's sales, allowing stakeholders to easily compare the growth trends over time.
๐ Scenario 2: Question: You're working with a dataset that requires extensive data cleaning and transformation before analysis. Describe your process for cleaning and preparing the data in Power BI, ensuring accuracy and efficiency.
Answer: For cleaning and preparing the dataset in Power BI, I would start by identifying and addressing missing or duplicate values, outliers, and inconsistencies in data formats. I would use Power Query Editor to perform data cleaning operations such as removing null values, renaming columns, and applying transformations like data type conversion and standardization. Additionally, I would create calculated columns or measures as needed to derive new insights from the cleaned data.
๐ Scenario 3: Question: Your organization wants to incorporate real-time data updates into their Power BI reports. How would you set up and manage live data connections in Power BI to ensure timely insights?
Answer: To incorporate real-time data updates into Power BI reports, I would utilize Power BI's streaming datasets feature. I would set up a data streaming connection to the source system, such as a database or API, and configure the dataset to receive real-time data updates at specified intervals. Then, I would design reports and visuals based on the streaming dataset, enabling stakeholders to view and analyze the latest data as it is updated in real-time.
โก Scenario 4: Question: You've noticed that your Power BI reports are taking longer to load and refresh than usual. How would you diagnose and address performance issues to optimize report performance?
Answer: If Power BI reports are experiencing performance issues, I would first identify potential bottlenecks by analyzing factors such as data volume, query complexity, and visual design. Then, I would optimize report performance by applying techniques such as data model optimization, query optimization, and visualization best practices.
โค1
๐ฒ ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฆ๐ค๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ (๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ๐๐ฒ๐๐!)๐
๐ฏ Want to level up your SQL skills with real business scenarios?๐
These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/40kF1x0
Save this post โ even completing 1 project can power up your SQL profile!โ ๏ธ
๐ฏ Want to level up your SQL skills with real business scenarios?๐
These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/40kF1x0
Save this post โ even completing 1 project can power up your SQL profile!โ ๏ธ
Data Analytics Roadmap
1. Fundamentals of Statistics and Mathematics
- Understand descriptive statistics: mean, median, mode, variance, standard deviation.
- Basics of probability theory.
- Hypothesis testing and statistical inference.
- Some linear algebra and calculus basics (optional depending on needs).
2. Learn Excel and Google Sheets
- Master spreadsheet basics: formulas, functions, pivot tables.
- Data visualization with charts and graphs.
- Basic automation with macros and advanced formulas.
3. Programming for Data Analytics
- Choose Python or R as your main analytical programming language.
- Python libraries: pandas (data manipulation), numpy (numerical operations), matplotlib and seaborn (visualization).
- For R: dplyr, ggplot2.
- Use Jupyter Notebook (Python) or RStudio for coding environment.
4. Databases and SQL
- Understand relational databases and how data is stored.
- Learn SQL queries: SELECT, JOIN, GROUP BY, aggregation functions.
- Practice querying real databases.
5. Data Visualization Tools
- Learn tools like Tableau, Power BI, or Looker.
- Build interactive dashboards and reports.
- Understand best practices for effective visualization (color, simplicity, clarity).
6. Business Analytics Fundamentals
- Understand business processes and workflows.
- Define Key Performance Indicators (KPIs).
- Translate business questions into analytical problems.
7. Data Cleaning and Preprocessing
- Handle missing, inconsistent, and outlier data.
- Data transformation and normalization techniques.
- Use Python (pandas) or other tools to clean data effectively.
8. Basics of Machine Learning (Optional for Advanced Skills)
- Understand simple models: linear regression, classification.
- Use scikit-learn library in Python.
- Apply models for forecasting and clustering.
9. Hands-on Practice and Projects
- Work on real datasets from Kaggle or other platforms.
- Build a portfolio showcasing your data analysis projects.
- Participate in data competitions and hackathons.
10. Communication and Reporting
- Develop skills in presenting data insights clearly.
- Create compelling reports and presentations.
- Learn to work with stakeholders to tailor insights.
Share with credits: https://t.iss.one/sqlspecialist
React โฅ๏ธ for more
1. Fundamentals of Statistics and Mathematics
- Understand descriptive statistics: mean, median, mode, variance, standard deviation.
- Basics of probability theory.
- Hypothesis testing and statistical inference.
- Some linear algebra and calculus basics (optional depending on needs).
2. Learn Excel and Google Sheets
- Master spreadsheet basics: formulas, functions, pivot tables.
- Data visualization with charts and graphs.
- Basic automation with macros and advanced formulas.
3. Programming for Data Analytics
- Choose Python or R as your main analytical programming language.
- Python libraries: pandas (data manipulation), numpy (numerical operations), matplotlib and seaborn (visualization).
- For R: dplyr, ggplot2.
- Use Jupyter Notebook (Python) or RStudio for coding environment.
4. Databases and SQL
- Understand relational databases and how data is stored.
- Learn SQL queries: SELECT, JOIN, GROUP BY, aggregation functions.
- Practice querying real databases.
5. Data Visualization Tools
- Learn tools like Tableau, Power BI, or Looker.
- Build interactive dashboards and reports.
- Understand best practices for effective visualization (color, simplicity, clarity).
6. Business Analytics Fundamentals
- Understand business processes and workflows.
- Define Key Performance Indicators (KPIs).
- Translate business questions into analytical problems.
7. Data Cleaning and Preprocessing
- Handle missing, inconsistent, and outlier data.
- Data transformation and normalization techniques.
- Use Python (pandas) or other tools to clean data effectively.
8. Basics of Machine Learning (Optional for Advanced Skills)
- Understand simple models: linear regression, classification.
- Use scikit-learn library in Python.
- Apply models for forecasting and clustering.
9. Hands-on Practice and Projects
- Work on real datasets from Kaggle or other platforms.
- Build a portfolio showcasing your data analysis projects.
- Participate in data competitions and hackathons.
10. Communication and Reporting
- Develop skills in presenting data insights clearly.
- Create compelling reports and presentations.
- Learn to work with stakeholders to tailor insights.
Share with credits: https://t.iss.one/sqlspecialist
React โฅ๏ธ for more
โค2
๐ฒ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ & ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐ป๐ฒ๐๐
Want to break into Data Science & Analytics but donโt want to spend on expensive courses?๐จโ๐ป
Start here โ with 100% FREE courses from Cisco, IBM, Google & LinkedIn, all with certificates you can showcase on LinkedIn or your resume!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Ix2oxd
This list will set you up with real-world, job-ready skillsโ ๏ธ
Want to break into Data Science & Analytics but donโt want to spend on expensive courses?๐จโ๐ป
Start here โ with 100% FREE courses from Cisco, IBM, Google & LinkedIn, all with certificates you can showcase on LinkedIn or your resume!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Ix2oxd
This list will set you up with real-world, job-ready skillsโ ๏ธ
โค2
There are several AI tools and libraries available to assist with coding in Python. Here are some of the most popular ones:
1. GitHub Copilot: An AI-powered code completion tool developed by GitHub and OpenAI. It can suggest entire lines or blocks of code based on the context of what you're writing.
2. Tabnine: An AI code completion tool that supports various IDEs and code editors. It uses deep learning models to predict and suggest code completions.
3. Kite: An AI-powered code completion and documentation tool that integrates with many popular IDEs. It offers in-line code completions and documentation for Python.
4. PyCharm's Code Completion: JetBrains' PyCharm IDE comes with advanced code completion features, which are enhanced by AI to provide context-aware suggestions.
5. Jupyter Notebooks with AI Integration: Jupyter notebooks can integrate with various AI tools and libraries for code completion and suggestions, like JupyterLab Code Formatter or extensions that integrate with AI models.
6. DeepCode: An AI-based code review tool that helps identify and fix bugs, security vulnerabilities, and code quality issues.
7. IntelliCode: An extension for Visual Studio Code that uses AI to provide code suggestions and improve productivity.
8. Codota: An AI-powered code suggestion tool that integrates with many IDEs and provides context-aware code completions.
9. Repl.it Ghostwriter: An AI-powered code completion tool available in the Repl.it online coding environment.
Join for more: https://t.iss.one/machinelearning_deeplearning
1. GitHub Copilot: An AI-powered code completion tool developed by GitHub and OpenAI. It can suggest entire lines or blocks of code based on the context of what you're writing.
2. Tabnine: An AI code completion tool that supports various IDEs and code editors. It uses deep learning models to predict and suggest code completions.
3. Kite: An AI-powered code completion and documentation tool that integrates with many popular IDEs. It offers in-line code completions and documentation for Python.
4. PyCharm's Code Completion: JetBrains' PyCharm IDE comes with advanced code completion features, which are enhanced by AI to provide context-aware suggestions.
5. Jupyter Notebooks with AI Integration: Jupyter notebooks can integrate with various AI tools and libraries for code completion and suggestions, like JupyterLab Code Formatter or extensions that integrate with AI models.
6. DeepCode: An AI-based code review tool that helps identify and fix bugs, security vulnerabilities, and code quality issues.
7. IntelliCode: An extension for Visual Studio Code that uses AI to provide code suggestions and improve productivity.
8. Codota: An AI-powered code suggestion tool that integrates with many IDEs and provides context-aware code completions.
9. Repl.it Ghostwriter: An AI-powered code completion tool available in the Repl.it online coding environment.
Join for more: https://t.iss.one/machinelearning_deeplearning
โค1
Forwarded from Artificial Intelligence
๐๐ฟ๐ฎ๐ฐ๐ธ ๐๐๐๐ก๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ โ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐!๐
If youโre serious about cracking top tech interviews โ from FAANG to startups โ this is the roadmap you canโt afford to miss๐
Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ completely free๐คฉ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3TJlpyW
Your dream job might just start here.โ ๏ธ
If youโre serious about cracking top tech interviews โ from FAANG to startups โ this is the roadmap you canโt afford to miss๐
Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ completely free๐คฉ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3TJlpyW
Your dream job might just start here.โ ๏ธ
โค1
Forwarded from Python Projects & Resources
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to break into data science in 2025โwithout spending a single rupee?๐ฐ๐จโ๐ป
Youโre in luck! Microsoft is offering powerful, beginner-friendly resources that teach you everything from Python fundamentals to AI and data analyticsโfor free๐คฉโ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vCIrb
Level up your career in the booming field of dataโ ๏ธ
Want to break into data science in 2025โwithout spending a single rupee?๐ฐ๐จโ๐ป
Youโre in luck! Microsoft is offering powerful, beginner-friendly resources that teach you everything from Python fundamentals to AI and data analyticsโfor free๐คฉโ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vCIrb
Level up your career in the booming field of dataโ ๏ธ
โค1
๐ฐ ๐ ๐๐๐-๐ช๐ฎ๐๐ฐ๐ต ๐ฌ๐ผ๐๐ง๐๐ฏ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ผ๐ฟ ๐๐๐ฒ๐ฟ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฆ๐๐๐ฑ๐ฒ๐ป๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
If youโre starting your data analytics journey, these 4 YouTube courses are pure gold โ and the best part? ๐ป๐คฉ
Theyโre completely free๐ฅ๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44DvNP1
Each course can help you build the right foundation for a successful tech careerโ ๏ธ
If youโre starting your data analytics journey, these 4 YouTube courses are pure gold โ and the best part? ๐ป๐คฉ
Theyโre completely free๐ฅ๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44DvNP1
Each course can help you build the right foundation for a successful tech careerโ ๏ธ
โค1
๐ฒ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ฟ๐ผ๐บ ๐ง๐ผ๐ฝ ๐ข๐ฟ๐ด๐ฎ๐ป๐ถ๐๐ฎ๐๐ถ๐ผ๐ป๐ ๐
A power-packed selection of 100% free, certified courses from top institutions:
- Data Analytics โ Cisco
- Digital Marketing โ Google
- Python for AI โ IBM/edX
- SQL & Databases โ Stanford
- Generative AI โ Google Cloud
- Machine Learning โ Harvard
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3FcwrZK
Master inโdemand tech skills with these 6 certified, top-tier free courses
A power-packed selection of 100% free, certified courses from top institutions:
- Data Analytics โ Cisco
- Digital Marketing โ Google
- Python for AI โ IBM/edX
- SQL & Databases โ Stanford
- Generative AI โ Google Cloud
- Machine Learning โ Harvard
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3FcwrZK
Master inโdemand tech skills with these 6 certified, top-tier free courses
โค4
As a data analyst, your focus isn't on creating dashboards, writing SQL queries, doing pivot tables, generating reports, or cleaning data.
Your focus should be solving business problems using these skills
- Donโt just write SQLโask why you're querying that data and what decision it will influence.
- Donโt just build a dashboardโask who will use it and how it will help them take action.
- Donโt just clean dataโknow what insight lies beneath the mess.
- Donโt just report metricsโask what story theyโre telling and what recommendation can follow.
Your focus should be solving business problems using these skills
- Donโt just write SQLโask why you're querying that data and what decision it will influence.
- Donโt just build a dashboardโask who will use it and how it will help them take action.
- Donโt just clean dataโknow what insight lies beneath the mess.
- Donโt just report metricsโask what story theyโre telling and what recommendation can follow.
โค2
๐ ๐ณ ๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ + ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Gain globally recognized skills with Microsoft x LinkedIn Career Essentials โ completely FREE!
๐ฏ Top Certifications:
๐น Generative AI
๐น Data Analysis
๐น Software Development
๐น Project Management
๐น Business Analysis
๐น System Administration
๐น Administrative Assistance
๐ 100% Free | Self-Paced | Industry-Aligned
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/46TZP2h
๐ผ Perfect for students, freshers & working professionals
Gain globally recognized skills with Microsoft x LinkedIn Career Essentials โ completely FREE!
๐ฏ Top Certifications:
๐น Generative AI
๐น Data Analysis
๐น Software Development
๐น Project Management
๐น Business Analysis
๐น System Administration
๐น Administrative Assistance
๐ 100% Free | Self-Paced | Industry-Aligned
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/46TZP2h
๐ผ Perfect for students, freshers & working professionals
โค1