Data Analytics & AI | SQL Interviews | Power BI Resources
25.3K subscribers
307 photos
2 videos
151 files
319 links
๐Ÿ”“Explore the fascinating world of Data Analytics & Artificial Intelligence

๐Ÿ’ป Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
Use of Machine Learning in Data Analytics
๐Ÿ‘2โค1
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐˜„๐—ถ๐˜๐—ต ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐—จ๐—ป๐—ถ๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ถ๐˜๐˜†๐Ÿ˜

๐ŸŽฏ Want to break into Data Science without spending a single rupee?๐Ÿ’ฐ

Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere๐Ÿ‘จโ€๐Ÿ’ปโœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3HxOgTW

These courses are designed by Ivy League experts and are trusted by thousands globallyโœ…๏ธ
โค1
Data Science Interview Questions with Answers

Whatโ€™s the difference between random forest and gradient boosting?

Random Forests builds each tree independently while Gradient Boosting builds one tree at a time.
Random Forests combine results at the end of the process (by averaging or "majority rules") while Gradient Boosting combines results along the way.

What happens to our linear regression model if we have three columns in our data: x, y, z โ€Šโ€”โ€Š and z is a sum of x and y?

We would not be able to perform the regression. Because z is linearly dependent on x and y so when performing the regression  would be a singular (not invertible) matrix.

Which regularization techniques do you know?

There are mainly two types of regularization,

L1 Regularization (Lasso regularization) - Adds the sum of absolute values of the coefficients to the cost function.
L2 Regularization (Ridge regularization) - Adds the sum of squares of coefficients to the cost function

Here, Lambda determines the amount of regularization.

How does L2 regularization look like in a linear model?

L2 regularization adds a penalty term to our cost function which is equal to the sum of squares of models coefficients multiplied by a lambda hyperparameter.

This technique makes sure that the coefficients are close to zero and is widely used in cases when we have a lot of features that might correlate with each other.

What are the main parameters in the gradient boosting model?

There are many parameters, but below are a few key defaults.

learning_rate=0.1 (shrinkage).
n_estimators=100 (number of trees).
max_depth=3.
min_samples_split=2.
min_samples_leaf=1.
subsample=1.0.

Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
๐ˆ๐๐Œ ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ๐Ÿ˜

๐Ÿš€ Dive into the world of Data Analytics with these 6 free courses by IBM!

Gain practical knowledge and stand out in your career with tools designed for real-world applications.

All courses come with expert guidance and are free to access!๐ŸŽ‰

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 
 
https://bit.ly/4iXOmmb
 
Enroll For FREE & Get Certified ๐ŸŽ“
10 Data Analyst Project Ideas to Boost Your Portfolio

โœ… Sales Dashboard (Power BI/Tableau) โ€“ Analyze revenue, region-wise trends, and KPIs
โœ… HR Analytics โ€“ Employee attrition, retention trends using Excel/SQL/Power BI
โœ… Customer Segmentation (SQL + Excel) โ€“ Analyze buying patterns and group customers
โœ… Survey Data Analysis โ€“ Clean, visualize, and interpret survey insights
โœ… E-commerce Data Analysis โ€“ Funnel analysis, product trends, and revenue mapping
โœ… Superstore Sales Analysis โ€“ Use public datasets to show time series and cohort trends
โœ… Marketing Campaign Effectiveness โ€“ SQL + A/B test analysis with statistical methods
โœ… Financial Dashboard โ€“ Visualize profit, loss, and KPIs using Power BI
โœ… YouTube/Instagram Analytics โ€“ Use social media data to find audience behavior insights
โœ… SQL Reporting Automation โ€“ Build and schedule automated SQL reports and visualizations

React โค๏ธ for more
โค1
This media is not supported in your browser
VIEW IN TELEGRAM
MEE6 in Telegram ๐Ÿ”ฅ

๐Ÿค– T22 - The best-in-class telegram group bot!

Stop juggling bots โ€”T22 is MissRose x GroupHelp x Safeguard with a mini-app dashboard!

๐Ÿ” Verification & Captcha
๐Ÿ›ก Advanced Moderation Tools  
๐Ÿ“ˆ Leveling System
๐Ÿ’ฌ Smart Welcome Flows
๐Ÿฆ Twitter Raids
๐Ÿง  Mini-App Dashboard
๐Ÿ“ฆ Miss Rose Config Importer

Discover T22 ๐Ÿ†“
By MEE6 Creator
โค1
What is the difference between data scientist, data engineer, data analyst and business intelligence?

๐Ÿง‘๐Ÿ”ฌ Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers โ€œWhy is this happening?โ€ and โ€œWhat will happen next?โ€
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month

๐Ÿ› ๏ธ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse

๐Ÿ“Š Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers โ€œWhat happened?โ€ or โ€œWhatโ€™s going on right now?โ€
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region

๐Ÿ“ˆ Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department

๐Ÿงฉ Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers

๐ŸŽฏ In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
โค2
๐Ÿฐ ๐—›๐—ถ๐—ด๐—ต-๐—œ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kC18XE

These courses help you gain hands-on experience โ€” exactly what top MNCs look for!โœ…๏ธ
โค1
7 Must-Have Tools for Data Analysts in 2025:

โœ… SQL โ€“ Still the #1 skill for querying and managing structured data
โœ… Excel / Google Sheets โ€“ Quick analysis, pivot tables, and essential calculations
โœ… Python (Pandas, NumPy) โ€“ For deep data manipulation and automation
โœ… Power BI โ€“ Transform data into interactive dashboards
โœ… Tableau โ€“ Visualize data patterns and trends with ease
โœ… Jupyter Notebook โ€“ Document, code, and visualize all in one place
โœ… Looker Studio โ€“ A free and sleek way to create shareable reports with live data.

Perfect blend of code, visuals, and storytelling.

React with โค๏ธ for free tutorials on each tool

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค3
๐Ÿญ๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ โ€“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป, ๐—š๐—ฟ๐—ผ๐˜„, ๐—ฆ๐˜‚๐—ฐ๐—ฐ๐—ฒ๐—ฒ๐—ฑ!๐Ÿ˜

๐Ÿš€ Looking to upgrade your skills without spending a rupee?๐Ÿ’ฐ

Hereโ€™s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ€” all absolutely FREE on Infosys Springboard!๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43UcmQ7

Save this blog, sign up, and start your upskilling journey today!โœ…๏ธ
โค1
Important Python concepts that every beginner should know

1. Variables & Data Types ๐Ÿง 
Variables are like boxes where you store stuff.
Python automatically knows the type of data you're working with!

name = "Alice" # String
age = 25 # Integer
height = 5.6 # Float
is_student = True # Boolean

2. Conditional Statements ๐Ÿ”€
Want your program to make decisions?
Use if, elif, and else!

if age > 18:
print("You're an adult!")
else:
print("You're a kid!")

3. Loops ๐Ÿ”
Repeat tasks without writing them 100 times!

For loop โ€“ Loop over a sequence

While loop โ€“ Loop until a condition is false


for i in range(5):
print(i) # 0 to 4

count = 0
while count < 3:
print("Hello")
count += 1

4. Functions โš™๏ธ
Reusable blocks of code. Keeps your program clean and DRY (Don't Repeat Yourself)!

def greet(name):
print(f"Hello, {name}!")

greet("Bob")

5. Lists, Tuples, Dictionaries, Sets ๐Ÿ“ฆ

List: Ordered, changeable

Tuple: Ordered, unchangeable

Dict: Key-value pairs

Set: Unordered, unique items


my_list = [1, 2, 3]
my_tuple = (4, 5, 6)
my_dict = {"name": "Alice", "age": 25}
my_set = {1, 2, 3}

6. String Manipulation โœ‚๏ธ
Work with text like a pro!

text = "Python is awesome"
print(text.upper()) # PYTHON IS AWESOME
print(text.replace("awesome", "cool")) # Python is cool

7. Input from User โŒจ๏ธ
Make your programs interactive!

name = input("Enter your name: ")
print("Hello " + name)

8. Error Handling โš ๏ธ
Catch mistakes before they crash your program.

try:
x = 1 / 0
except ZeroDivisionError:
print("You can't divide by zero!")

9. File Handling ๐Ÿ“
Read or write files using Python.

with open("notes.txt", "r") as file:
content = file.read()
print(content)

10. Object-Oriented Programming (OOP) ๐Ÿงฑ
Python lets you model real-world things using classes and objects.

class Dog:
def init(self, name):
self.name = name

def bark(self):
print(f"{self.name} says woof!")

my_dog = Dog("Buddy")
my_dog.bark()



React with โค๏ธ if you want me to cover each Python concept in detail.

For all resources and cheat sheets, check out my Telegram channel: https://t.iss.one/pythonproz

Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

Hope it helps :)
โค1๐Ÿ”ฅ1
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ: ๐—ง๐—ต๐—ฒ ๐—•๐—ฒ๐˜€๐˜ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐—ถ๐—ป๐—ด ๐—ฃ๐—ผ๐—ถ๐—ป๐˜ ๐—ณ๐—ผ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต & ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€๐Ÿ˜

๐Ÿš€ Want to break into tech or data analytics but donโ€™t know how to start?๐Ÿ“Œโœจ๏ธ

Python is the #1 most in-demand programming language, and Scalerโ€™s free Python for Beginners course is a game-changer for absolute beginners๐Ÿ“Šโœ”๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45TroYX

No coding background needed!โœ…๏ธ
Advanced Skills to Elevate Your Data Analytics Career

1๏ธโƒฃ SQL Optimization & Performance Tuning

๐Ÿš€ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.

2๏ธโƒฃ Machine Learning Basics

๐Ÿค– Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.

3๏ธโƒฃ Big Data Technologies

๐Ÿ—๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.

4๏ธโƒฃ Data Engineering Skills

โš™๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.

5๏ธโƒฃ Advanced Python for Analytics

๐Ÿ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.

6๏ธโƒฃ A/B Testing & Experimentation

๐ŸŽฏ Design and analyze controlled experiments to drive data-driven decision-making.

7๏ธโƒฃ Dashboard Design & UX

๐ŸŽจ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.

8๏ธโƒฃ Cloud Data Analytics

โ˜๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.

9๏ธโƒฃ Domain Expertise

๐Ÿ’ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.

๐Ÿ”Ÿ Soft Skills & Leadership

๐Ÿ’ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.

Hope it helps :)

#dataanalytics
โค1
๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4e76jMX

Enroll For FREE & Get Certified!โœ…๏ธ
NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
134.6 KB
Cheatsheet on Numpy and pandas for easy viewing ๐Ÿ‘€
ibm_machine_learning_for_dummies.pdf
1.8 MB
Short Machine Learning guide on industry applications and how itโ€™s used to resolve problems ๐Ÿ’ก
โค2
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

๐ŸŽฏ Want to break into Machine Learning but donโ€™t know where to start?โœจ๏ธ

You donโ€™t need a fancy degree or expensive course to begin your ML journey๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jRouYb

This list is for anyone ready to start learning ML from scratchโœ…๏ธ
9 ChatGPT-4o prompt engineering frameworks:

1. A.P.E
A | Action: Define the job or activity.
P | Purpose: Discuss the goal.
E | Expectation: State the desired outcome.

2. T.A.G
T | Task: Define the task.
A | Action: Describe the steps.
G | Goal: Explain the end goal.

3. E.R.A
E | Expectation: Describe the desired result.
R | Role: Specify ChatGPTโ€™s role.
A | Action: Specify needed actions.

4. R.A.C.E
R | Role: Specify ChatGPTโ€™s role.
A | Action: Detail the necessary action.
C | Context: Provide situational details.
E | Expectation: Describe the expected outcome.

5. R.I.S.E
R | Request: Specify ChatGPTโ€™s role.
I | Input: Provide necessary information.
S | Scenario: Detail the steps.
E | Expectation: Describe the result.

6. C.A.R.E
C | Context: Set the stage.
A | Action: Describe the task.
R | Result: Describe the outcome.
E | Example: Give an illustration.

7. C.O.A.S.T
C | Context: Set the stage.
O | Objective: Describe the goal.
A | Actions: Explain needed steps.
S | Steps: Describe the situation.
T | Task: Outline the task.

8. T.R.A.C.E
T | Task: Define the task.
R | Role: Describe the need.
A | Action: State the required action.
C | Context: Provide the context or situation.
E | Expectation: Illustrate with an example.

9. R.O.S.E.S
R | Role: Specify ChatGPTโ€™s role.
O | Objective: State the goal or aim.
S | Steps: Describe the situation.
E | Expected Solution: Define the outcome.
S | Scenario: Ask for actions needed to reach the solution.


React with โค๏ธ for more

Everything about ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
โค4
๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€: ๐Ÿฑ ๐—ฆ๐˜๐—ฒ๐—ฝ๐˜€ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

Want to break into Data Science but donโ€™t know where to begin?๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

Youโ€™re not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.๐Ÿ’ซ๐Ÿ“ฒ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3SU5FJ0

No prior experience needed!โœ…๏ธ
Breaking into Data Science doesnโ€™t need to be complicated.

If youโ€™re just starting out,

Hereโ€™s how to simplify your approach:

Avoid:
๐Ÿšซ Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
๐Ÿšซ Spending months on theoretical concepts without hands-on practice.
๐Ÿšซ Overloading your resume with keywords instead of impactful projects.
๐Ÿšซ Believing you need a Ph.D. to break into the field.

Instead:

โœ… Start with Python or Rโ€”focus on mastering one language first.
โœ… Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
โœ… Dive into a simple machine learning model (like linear regression) to understand the basics.
โœ… Solve real-world problems with open datasets and share them in a portfolio.
โœ… Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š

#ai #datascience
โค4