Data Analytics & AI | SQL Interviews | Power BI Resources
25.4K subscribers
307 photos
2 videos
151 files
319 links
๐Ÿ”“Explore the fascinating world of Data Analytics & Artificial Intelligence

๐Ÿ’ป Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
๐——๐—ฟ๐—ฒ๐—ฎ๐—บ ๐—๐—ผ๐—ฏ ๐—ฎ๐˜ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ? ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ช๐—ถ๐—น๐—น ๐—›๐—ฒ๐—น๐—ฝ ๐—ฌ๐—ผ๐˜‚ ๐—š๐—ฒ๐˜ ๐—ง๐—ต๐—ฒ๐—ฟ๐—ฒ๐Ÿ˜

Dreaming of working at Google but not sure where to even begin?๐Ÿ“

Start with these FREE insider resourcesโ€”from building a resume that stands out to mastering the Google interview process. ๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/441GCKF

Because if someone else can do it, so can you. Why not you? Why not now?โœ…๏ธ
๐Ÿ‘2
๐—ก๐—ผ ๐——๐—ฒ๐—ด๐—ฟ๐—ฒ๐—ฒ? ๐—ก๐—ผ ๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ. ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฐ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—–๐—ฎ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ฑ ๐—ฌ๐—ผ๐˜‚ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—๐—ผ๐—ฏ๐Ÿ˜

Dreaming of a career in data but donโ€™t have a degree? You donโ€™t need one. What you do need are the right skills๐Ÿ”—

These 4 free/affordable certifications can get you there. ๐Ÿ’ปโœจ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ioaJ2p

Letโ€™s get you certified and hired!โœ…๏ธ
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ (๐—ก๐—ผ ๐—ฆ๐˜๐—ฟ๐—ถ๐—ป๐—ด๐˜€ ๐—”๐˜๐˜๐—ฎ๐—ฐ๐—ต๐—ฒ๐—ฑ)

๐—ก๐—ผ ๐—ณ๐—ฎ๐—ป๐—ฐ๐˜† ๐—ฐ๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€, ๐—ป๐—ผ ๐—ฐ๐—ผ๐—ป๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐˜€, ๐—ท๐˜‚๐˜€๐˜ ๐—ฝ๐˜‚๐—ฟ๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด.

๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜:

1๏ธโƒฃ Python Programming for Data Science โ†’ Harvardโ€™s CS50P
The best intro to Python for absolute beginners:
โ†ฌ Covers loops, data structures, and practical exercises.
โ†ฌ Designed to help you build foundational coding skills.

Link: https://cs50.harvard.edu/python/

https://t.iss.one/datasciencefun

2๏ธโƒฃ Statistics & Probability โ†’ Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
โ†ฌ Clear, beginner-friendly videos.
โ†ฌ Exercises to test your skills.

Link: https://www.khanacademy.org/math/statistics-probability

https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O

3๏ธโƒฃ Linear Algebra for Data Science โ†’ 3Blue1Brown
โ†ฌ Learn about matrices, vectors, and transformations.
โ†ฌ Essential for machine learning models.

Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr

4๏ธโƒฃ SQL Basics โ†’ Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
โ†ฌ Writing queries, joins, and filtering data.
โ†ฌ Real-world datasets to practice.

Link: https://mode.com/sql-tutorial

https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

5๏ธโƒฃ Data Visualization โ†’ freeCodeCamp
Learn to create stunning visualizations using Python libraries:
โ†ฌ Covers Matplotlib, Seaborn, and Plotly.
โ†ฌ Step-by-step projects included.

Link: https://www.youtube.com/watch?v=JLzTJhC2DZg

https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34

6๏ธโƒฃ Machine Learning Basics โ†’ Googleโ€™s Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
โ†ฌ Learn supervised and unsupervised learning.
โ†ฌ Hands-on coding with TensorFlow.

Link: https://developers.google.com/machine-learning/crash-course

7๏ธโƒฃ Deep Learning โ†’ Fast.aiโ€™s Free Course
Fast.ai makes deep learning easy and accessible:
โ†ฌ Build neural networks with PyTorch.
โ†ฌ Learn by coding real projects.

Link: https://course.fast.ai/

8๏ธโƒฃ Data Science Projects โ†’ Kaggle
โ†ฌ Compete in challenges to practice your skills.
โ†ฌ Great way to build your portfolio.

Link: https://www.kaggle.com/
๐Ÿ‘3
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜โ€™๐—น๐—น ๐— ๐—ฎ๐—ธ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—™๐—ถ๐—ป๐—ฎ๐—น๐—น๐˜† ๐—–๐—น๐—ถ๐—ฐ๐—ธ.๐Ÿ˜

SQL seems tough, right? ๐Ÿ˜ฉ

These 5 FREE SQL resources will take you from beginner to advanced without boring theory dumps or confusion.๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3GtntaC

Master it with ease. ๐Ÿ’ก
Here are 10 project ideas to work on for Data Analytics

1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.

And this is how you can work on

Hereโ€™s a compact list of free resources for working on data analytics projects:

1. Datasets
โ€ข Kaggle Datasets: Wide range of datasets and community discussions.
โ€ข UCI Machine Learning Repository: Great for educational datasets.
โ€ข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โ€ข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โ€ข 365DataScience: Data Science & AI Related Courses
3. Tools
โ€ข Google Colab: Free Jupyter Notebooks for Python coding.
โ€ข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โ€ข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โ€ข Data Analytics on Medium: Project guides and tutorials.

ENJOY LEARNING โœ…๏ธโœ…๏ธ

#datascienceprojects
โค2
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ โ€” ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ โ€” ๐——๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜๐—น๐˜† ๐—ณ๐—ฟ๐—ผ๐—บ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ?๐Ÿ˜

Whether youโ€™re a student, job seeker, or just hungry to upskill โ€” these 5 beginner-friendly courses are your golden ticket. ๐ŸŽŸ๏ธ

Just career-boosting knowledge and certificates that make your resume pop๐Ÿ“„

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42vL6br

All The Best ๐ŸŽŠ
100 Days of Data Science
๐Ÿ”ฅ4
Forwarded from Artificial Intelligence
๐—ง๐—–๐—ฆ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Want to kickstart your career in Data Analytics but donโ€™t know where to begin?๐Ÿ‘จโ€๐Ÿ’ป

TCS has your back with a completely FREE course designed just for beginnersโœ…

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jNMoEg

Just pure, job-ready learning๐Ÿ“
Difference between linear regression and logistic regression ๐Ÿ‘‡๐Ÿ‘‡

Linear regression and logistic regression are both types of statistical models used for prediction and modeling, but they have different purposes and applications.

Linear regression is used to model the relationship between a dependent variable and one or more independent variables. It is used when the dependent variable is continuous and can take any value within a range. The goal of linear regression is to find the best-fitting line that describes the relationship between the independent and dependent variables.

Logistic regression, on the other hand, is used when the dependent variable is binary or categorical. It is used to model the probability of a certain event occurring based on one or more independent variables. The output of logistic regression is a probability value between 0 and 1, which can be interpreted as the likelihood of the event happening.

Data Science Interview Resources
๐Ÿ‘‡๐Ÿ‘‡
https://topmate.io/coding/914624

Like for more ๐Ÿ˜„
๐Ÿ‘2
๐Ÿฒ ๐—•๐—ฒ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ต๐—ฎ๐—ป๐—ป๐—ฒ๐—น๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ๐Ÿ˜

Power BI Isnโ€™t Just a Toolโ€”Itโ€™s a Career Game-Changer๐Ÿš€

Whether youโ€™re a student, a working professional, or switching careers, learning Power BI can set you apart in the competitive world of data analytics๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3ELirpu

Your Analytics Journey Starts Nowโœ…๏ธ
๐Ÿ‘1
Scientists use generative AI to answer complex questions in physics

Researchers from MIT and the University of Basel in Switzerland applied generative artificial intelligence models to this problem, developing a new machine-learning framework that can automatically map out phase diagrams for novel physical systems.

Their physics-informed machine-learning approach is more efficient than laborious, manual techniques which rely on theoretical expertise. Importantly, because their approach leverages generative models, it does not require huge, labeled training datasets used in other machine-learning techniques.

Such a framework could help scientists investigate the thermodynamic properties of novel materials or detect entanglement in quantum systems, for instance. Ultimately, this technique could make it possible for scientists to discover unknown phases of matter autonomously.


Source-Link: MIT
๐Ÿ‘1
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—œ๐—•๐—  ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฆ๐—ธ๐˜†๐—ฟ๐—ผ๐—ฐ๐—ธ๐—ฒ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ๐Ÿ˜

From mastering Cloud Computing to diving into Deep Learning, Docker, Big Data, and IoT Blockchain

IBM, one of the biggest tech companies, is offering 5 FREE courses that can seriously upgrade your resume and skills โ€” without costing you anything.

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/44GsWoC

Enroll For FREE & Get Certified โœ…
๐Ÿ‘1
Statistical interview questions for entry-level data analyst roles in an MNC.

1. Explain the difference between mean, median, and mode. When would you use each?
2. How do you calculate the variance and standard deviation of a dataset?
3. What is skewness and kurtosis? How do they help in understanding data distribution?
4. What is the central limit theorem, and why is it important in statistics?
5. Describe different types of probability distributions (e.g., normal, binomial, Poisson).
6. Explain the difference between a population and a sample. Why is sampling important?
7. What are null and alternative hypotheses? How do you formulate them?
8. Describe the steps in conducting a hypothesis test.
9. What is a p-value? How do you interpret it in the context of a hypothesis test?
10. When would you use a t-test versus a z-test?
11. Explain how you would conduct an independent two-sample t-test. What assumptions must be met?
12. Describe a scenario where you would use a paired sample t-test.
13. What is ANOVA, and how does it differ from a t-test?
14. Explain how you would interpret the results of a one-way ANOVA.
15. Describe a situation where you might use a two-way ANOVA.
16. What is a chi-square test for independence? When would you use it?
17. How do you interpret the results of a chi-square goodness-of-fit test?
18. Explain the assumptions and limitations of chi-square tests.
19. What is the difference between simple linear regression and multiple regression?
20. How do you assess the goodness-of-fit of a regression model?
21. Explain multicollinearity and how you would detect and handle it in a regression model.
22. What is the difference between correlation and causation?
23. How do you interpret the Pearson correlation coefficient?
24. When would you use Spearman rank correlation instead of Pearson correlation?
25. What are some common methods for forecasting time series data?
26. Explain the components of a time series (trend, seasonality, residuals).
27. How would you handle missing data in a time series dataset?
28. Describe your approach to exploratory data analysis (EDA).
29. How do you handle outliers in a dataset?
30. Explain the steps you would take to validate the results of your analysis.
31. Give an example of how you have used statistical analysis to solve a real-world problem

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘3
Forwarded from Generative AI
๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—”๐—œ๐Ÿ˜

Dreaming of Mastering AI? ๐ŸŽฏ

Harvard and Stanfordโ€”two of the most prestigious universities in the worldโ€”are offering FREE AI courses๐Ÿ‘จโ€๐Ÿ’ป

No hidden fees, no long applicationsโ€”just pure, world-class education, accessible to everyone๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3GqHkau

Hereโ€™s your golden ticket to the future!โœ…
๐Ÿ‘2