ใDPK-AI TradingใAutomatic quantitative system can automatically search for the lowest selling price of digital currencies such as BTC, ETH, USDT, etc. on major exchanges, and quickly purchase them in seconds.
1.DPKAI-quantification, deposits and withdrawals are automatically credited.
2. VIP1-VIP11, quantitative income 20% -35% income.
3. Support multi-currency, smart investment income 25%% up to 40% income.
4. Quantification is reset every 24 hours, and each person can participate in quantitative trading income once a day.
5. Recommend three-level agent invitation rewards, the more invitations, the more rewards, there is no upper limit [A reward 10%, B reward 5%, C reward 3% = 18% reward], send the invitation link to share to your social software, such as: Tiktok, Facebook, Twitter, YouTube, Instagram, WhatsApp group, Telegram group, etc.
ใDPK-AI TradingใRegistration link: https://dpk-ai.com/#/register?ref=829441
ใDPK-AI TradingใOnline customer service: https://chat.ssrchat.com/service/gomw2j
1.DPKAI-quantification, deposits and withdrawals are automatically credited.
2. VIP1-VIP11, quantitative income 20% -35% income.
3. Support multi-currency, smart investment income 25%% up to 40% income.
4. Quantification is reset every 24 hours, and each person can participate in quantitative trading income once a day.
5. Recommend three-level agent invitation rewards, the more invitations, the more rewards, there is no upper limit [A reward 10%, B reward 5%, C reward 3% = 18% reward], send the invitation link to share to your social software, such as: Tiktok, Facebook, Twitter, YouTube, Instagram, WhatsApp group, Telegram group, etc.
ใDPK-AI TradingใRegistration link: https://dpk-ai.com/#/register?ref=829441
ใDPK-AI TradingใOnline customer service: https://chat.ssrchat.com/service/gomw2j
๐2
๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ & ๐๐น๐ฒ๐๐ฎ๐๐ฒ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ต๐ฏ๐ผ๐ฎ๐ฟ๐ฑ ๐๐ฎ๐บ๐ฒ!๐
Want to turn raw data into stunning visual stories?๐
Here are 6 FREE Power BI courses thatโll take you from beginner to proโwithout spending a single rupee๐ฐ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cwsGL2
Enjoy Learning โ ๏ธ
Want to turn raw data into stunning visual stories?๐
Here are 6 FREE Power BI courses thatโll take you from beginner to proโwithout spending a single rupee๐ฐ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cwsGL2
Enjoy Learning โ ๏ธ
๐2
๐1
Here are 5 key Python libraries/ concepts that are particularly important for data analysts:
1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.
2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.
3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.
4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.
5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.
By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.
2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.
3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.
4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.
5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.
By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
๐2
๐๐ป๐ณ๐ผ๐๐๐ ๐ญ๐ฌ๐ฌ% ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resumeโat no cost.
Whether youโre a student, graduate, or working professional, this platform has something valuable for everyone.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resumeโat no cost.
Whether youโre a student, graduate, or working professional, this platform has something valuable for everyone.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
AI is playing a critical role in advancing cybersecurity by enhancing threat detection, response, and overall security posture. Here are some key AI trends in cybersecurity:
1. Advanced Threat Detection:
- Anomaly Detection: AI systems analyze network traffic and user behavior to detect anomalies that may indicate a security breach or insider threat.
- Real-Time Monitoring: AI-powered tools provide real-time monitoring and analysis of security events, identifying and mitigating threats as they occur.
2. Behavioral Analytics:
- User Behavior Analytics (UBA): AI models profile user behavior to detect deviations that could signify compromised accounts or malicious insiders.
- Entity Behavior Analytics (EBA): Similar to UBA but focuses on the behavior of devices and applications within the network to identify potential threats.
3. Automated Incident Response:
- Security Orchestration, Automation, and Response (SOAR): AI automates routine security tasks, such as threat hunting and incident response, to reduce response times and improve efficiency.
- Playbook Automation: AI-driven playbooks guide incident response actions based on predefined protocols, ensuring consistent and rapid responses to threats.
4. Predictive Threat Intelligence:
- Threat Prediction: AI predicts potential cyber threats by analyzing historical data, threat intelligence feeds, and emerging threat patterns.
- Proactive Defense: AI enables proactive defense strategies by identifying and mitigating potential vulnerabilities before they can be exploited.
5. Enhanced Malware Detection:
- Signatureless Detection: AI identifies malware based on behavior and characteristics rather than relying solely on known signatures, improving detection of zero-day threats.
- Dynamic Analysis: AI analyzes the behavior of files and applications in a sandbox environment to detect malicious activity.
6. Fraud Detection and Prevention:
- Transaction Monitoring: AI detects fraudulent transactions in real-time by analyzing transaction patterns and flagging anomalies.
- Identity Verification: AI enhances identity verification processes by analyzing biometric data and other authentication factors.
7. Phishing Detection:
- Email Filtering: AI analyzes email content and metadata to detect phishing attempts and prevent them from reaching users.
- URL Analysis: AI examines URLs and associated content to identify and block malicious websites used in phishing attacks.
8. Vulnerability Management:
- Automated Vulnerability Scanning: AI continuously scans systems and applications for vulnerabilities, prioritizing them based on risk and impact.
- Patch Management: AI recommends and automates the deployment of security patches to mitigate vulnerabilities.
9. Natural Language Processing (NLP) in Security:
- Threat Intelligence Analysis: AI-powered NLP tools analyze and extract relevant information from threat intelligence reports and security feeds.
- Chatbot Integration: AI chatbots assist with security-related queries and provide real-time support for incident response teams.
10. Deception Technology:
- AI-Driven Honeypots: AI enhances honeypot technologies by creating realistic decoys that attract and analyze attacker behavior.
- Deceptive Environments: AI generates deceptive network environments to mislead attackers and gather intelligence on their tactics.
11. Continuous Authentication:
- Behavioral Biometrics: AI continuously monitors user behavior, such as typing patterns and mouse movements, to authenticate users and detect anomalies.
- Adaptive Authentication: AI adjusts authentication requirements based on the risk profile of user activities and contextual factors.
Cybersecurity Resources: https://t.iss.one/EthicalHackingToday
Join for more: t.iss.one/AI_Best_Tools
1. Advanced Threat Detection:
- Anomaly Detection: AI systems analyze network traffic and user behavior to detect anomalies that may indicate a security breach or insider threat.
- Real-Time Monitoring: AI-powered tools provide real-time monitoring and analysis of security events, identifying and mitigating threats as they occur.
2. Behavioral Analytics:
- User Behavior Analytics (UBA): AI models profile user behavior to detect deviations that could signify compromised accounts or malicious insiders.
- Entity Behavior Analytics (EBA): Similar to UBA but focuses on the behavior of devices and applications within the network to identify potential threats.
3. Automated Incident Response:
- Security Orchestration, Automation, and Response (SOAR): AI automates routine security tasks, such as threat hunting and incident response, to reduce response times and improve efficiency.
- Playbook Automation: AI-driven playbooks guide incident response actions based on predefined protocols, ensuring consistent and rapid responses to threats.
4. Predictive Threat Intelligence:
- Threat Prediction: AI predicts potential cyber threats by analyzing historical data, threat intelligence feeds, and emerging threat patterns.
- Proactive Defense: AI enables proactive defense strategies by identifying and mitigating potential vulnerabilities before they can be exploited.
5. Enhanced Malware Detection:
- Signatureless Detection: AI identifies malware based on behavior and characteristics rather than relying solely on known signatures, improving detection of zero-day threats.
- Dynamic Analysis: AI analyzes the behavior of files and applications in a sandbox environment to detect malicious activity.
6. Fraud Detection and Prevention:
- Transaction Monitoring: AI detects fraudulent transactions in real-time by analyzing transaction patterns and flagging anomalies.
- Identity Verification: AI enhances identity verification processes by analyzing biometric data and other authentication factors.
7. Phishing Detection:
- Email Filtering: AI analyzes email content and metadata to detect phishing attempts and prevent them from reaching users.
- URL Analysis: AI examines URLs and associated content to identify and block malicious websites used in phishing attacks.
8. Vulnerability Management:
- Automated Vulnerability Scanning: AI continuously scans systems and applications for vulnerabilities, prioritizing them based on risk and impact.
- Patch Management: AI recommends and automates the deployment of security patches to mitigate vulnerabilities.
9. Natural Language Processing (NLP) in Security:
- Threat Intelligence Analysis: AI-powered NLP tools analyze and extract relevant information from threat intelligence reports and security feeds.
- Chatbot Integration: AI chatbots assist with security-related queries and provide real-time support for incident response teams.
10. Deception Technology:
- AI-Driven Honeypots: AI enhances honeypot technologies by creating realistic decoys that attract and analyze attacker behavior.
- Deceptive Environments: AI generates deceptive network environments to mislead attackers and gather intelligence on their tactics.
11. Continuous Authentication:
- Behavioral Biometrics: AI continuously monitors user behavior, such as typing patterns and mouse movements, to authenticate users and detect anomalies.
- Adaptive Authentication: AI adjusts authentication requirements based on the risk profile of user activities and contextual factors.
Cybersecurity Resources: https://t.iss.one/EthicalHackingToday
Join for more: t.iss.one/AI_Best_Tools
๐1
๐ฑ ๐๐ฅ๐๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ฟ๐ผ๐บ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐, ๐๐ช๐ฆ, ๐๐๐ , ๐๐ถ๐๐ฐ๐ผ, ๐ฎ๐ป๐ฑ ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ. ๐
- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3E2wYNr
Enroll For FREE & Get Certified ๐
- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3E2wYNr
Enroll For FREE & Get Certified ๐
Please go through this top 10 SQL projects with Datasets that you can practice and can add in your resume
๐1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)
๐2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)
๐3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)
๐4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)
๐5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)
๐6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)
๐ 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)
๐8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)
๐9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)
๐10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)
Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since itโs a programming language try to make it more exciting for yourself.
Join for more: https://t.iss.one/DataPortfolio
Hope this piece of information helps you
๐1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)
๐2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)
๐3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)
๐4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)
๐5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)
๐6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)
๐ 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)
๐8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)
๐9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)
๐10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)
Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since itโs a programming language try to make it more exciting for yourself.
Join for more: https://t.iss.one/DataPortfolio
Hope this piece of information helps you
๐1
๐ฏ ๐๐ฅ๐๐ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐๐ฒ ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฎ๐ฌ๐ฎ๐ฑ๐
Taught by industry leaders (like Microsoft - 100% online and beginner-friendly
* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3R7asWB
Enroll Now & Get Certified ๐
Taught by industry leaders (like Microsoft - 100% online and beginner-friendly
* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3R7asWB
Enroll Now & Get Certified ๐
๐1
7 Free Kaggle Micro-Courses for Data Science Beginners with Certification
Python
https://www.kaggle.com/learn/python
Pandas
https://www.kaggle.com/learn/pandas
Data visualization
https://www.kaggle.com/learn/data-visualization
Intro to sql
https://www.kaggle.com/learn/intro-to-sql
Advanced Sql
https://www.kaggle.com/learn/advanced-sql
Intro to ML
https://www.kaggle.com/learn/intro-to-machine-learning
Advanced ML
https://www.kaggle.com/learn/intermediate-machine-learning
#datascienceprojects #kaggle
Python
https://www.kaggle.com/learn/python
Pandas
https://www.kaggle.com/learn/pandas
Data visualization
https://www.kaggle.com/learn/data-visualization
Intro to sql
https://www.kaggle.com/learn/intro-to-sql
Advanced Sql
https://www.kaggle.com/learn/advanced-sql
Intro to ML
https://www.kaggle.com/learn/intro-to-machine-learning
Advanced ML
https://www.kaggle.com/learn/intermediate-machine-learning
#datascienceprojects #kaggle
๐2
AI Myths vs. Reality
1๏ธโฃ AI Can Think Like Humans โ โ Myth
๐ค AI doesnโt "think" or "understand" like humans. It predicts based on patterns in data but lacks reasoning or emotions.
2๏ธโฃ AI Will Replace All Jobs โ โ Myth
๐จโ๐ป AI automates repetitive tasks but creates new job opportunities in AI development, ethics, and oversight.
3๏ธโฃ AI is 100% Accurate โ โ Myth
โ AI can generate incorrect or biased outputs because it learns from imperfect human data.
4๏ธโฃ AI is the Same as AGI โ โ Myth
๐ง Generative AI is task-specific, while AGI (which doesnโt exist yet) would have human-like intelligence.
5๏ธโฃ AI is Only for Big Tech โ โ Myth
๐ก Startups, small businesses, and individuals use AI for marketing, automation, and content creation.
6๏ธโฃ AI Models Donโt Need Human Supervision โ โ Myth
๐ AI requires human oversight to ensure ethical use and prevent misinformation.
7๏ธโฃ AI Will Keep Getting Smarter Forever โ โ Myth
๐ AI is limited by its training data and doesnโt improve on its own without new data and updates.
AI is powerful but not magic. Knowing its limits helps us use it wisely. ๐
1๏ธโฃ AI Can Think Like Humans โ โ Myth
๐ค AI doesnโt "think" or "understand" like humans. It predicts based on patterns in data but lacks reasoning or emotions.
2๏ธโฃ AI Will Replace All Jobs โ โ Myth
๐จโ๐ป AI automates repetitive tasks but creates new job opportunities in AI development, ethics, and oversight.
3๏ธโฃ AI is 100% Accurate โ โ Myth
โ AI can generate incorrect or biased outputs because it learns from imperfect human data.
4๏ธโฃ AI is the Same as AGI โ โ Myth
๐ง Generative AI is task-specific, while AGI (which doesnโt exist yet) would have human-like intelligence.
5๏ธโฃ AI is Only for Big Tech โ โ Myth
๐ก Startups, small businesses, and individuals use AI for marketing, automation, and content creation.
6๏ธโฃ AI Models Donโt Need Human Supervision โ โ Myth
๐ AI requires human oversight to ensure ethical use and prevent misinformation.
7๏ธโฃ AI Will Keep Getting Smarter Forever โ โ Myth
๐ AI is limited by its training data and doesnโt improve on its own without new data and updates.
AI is powerful but not magic. Knowing its limits helps us use it wisely. ๐
๐2