Data Analytics & AI | SQL Interviews | Power BI Resources
25.2K subscribers
304 photos
2 videos
151 files
316 links
๐Ÿ”“Explore the fascinating world of Data Analytics & Artificial Intelligence

๐Ÿ’ป Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun
Download Telegram
Complete Syllabus for Data Analytics interview:

SQL:
1. Basic   
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING   
- Basic JOINS (INNER, LEFT, RIGHT, FULL)   
- Creating and using simple databases and tables

2. Intermediate   
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)   
- Subqueries and nested queries
- Common Table Expressions (WITH clause)   
- CASE statements for conditional logic in queries
3. Advanced   
- Advanced JOIN techniques (self-join, non-equi join)   
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)   
- optimization with indexing   
- Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Basic   
- Syntax, variables, data types (integers, floats, strings, booleans)   
- Control structures (if-else, for and while loops)   
- Basic data structures (lists, dictionaries, sets, tuples)   
- Functions, lambda functions, error handling (try-except)   
- Modules and packages

2. Pandas & Numpy   
- Creating and manipulating DataFrames and Series   
- Indexing, selecting, and filtering data   
- Handling missing data (fillna, dropna)   
- Data aggregation with groupby, summarizing data   
- Merging, joining, and concatenating datasets

3. Basic Visualization   
- Basic plotting with Matplotlib (line plots, bar plots, histograms)   
- Visualization with Seaborn (scatter plots, box plots, pair plots)   
- Customizing plots (sizes, labels, legends, color palettes)   
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Basic   
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)   
- Introduction to charts and basic data visualization   
- Data sorting and filtering   
- Conditional formatting

2. Intermediate   
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)   
- PivotTables and PivotCharts for summarizing data   
- Data validation tools   
- What-if analysis tools (Data Tables, Goal Seek)

3. Advanced   
- Array formulas and advanced functions   
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables   
- Dynamic charts and interactive dashboards

Power BI:
1. Data Modeling   
- Importing data from various sources   
- Creating and managing relationships between different datasets   
- Data modeling basics (star schema, snowflake schema)

2. Data Transformation   
- Using Power Query for data cleaning and transformation   
- Advanced data shaping techniques   
- Calculated columns and measures using DAX

3. Data Visualization and Reporting   - Creating interactive reports and dashboards   
- Visualizations (bar, line, pie charts, maps)   
- Publishing and sharing reports, scheduling data refreshes

Statistics Fundamentals: Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.

Like for more ๐Ÿ˜„โค๏ธ

Python WhatsApp Community: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
๐Ÿ‘4โค1
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฆ๐—ค๐—Ÿ ๐—ณ๐—ผ๐—ฟ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€, ๐—™๐—ฎ๐˜€๐˜!

Here are 10 must-know SQL concepts:

โ— Stored Procedure vs. Function
Procedures allow DML; functions handle calculations only.

โ— Clustered vs. Non-Clustered Index
Clustered sorts data physically; non-clustered creates pointers.

โ— DELETE vs. TRUNCATE
DELETE is row-specific; TRUNCATE clears all rows fast.

โ— WHERE vs. HAVING
WHERE filters rows; HAVING filters after GROUP BY.

โ— Primary Key vs. Unique Key
Primary is unique & non-null; Unique allows one null.

โ— JOIN Types
INNER, LEFT, RIGHT, FULL JOINโ€”combine tables in different ways.

โ— Normalization Forms
Minimizes redundancy and improves data integrity.

โ— ACID Properties
Ensures reliable transactions with Atomicity, Consistency, Isolation, Durability.

โ— Indexes
Speeds up data retrieval; careful use is key.

โ— Subqueries
Nest queries within queries for flexible data retrieval.

Master these, and youโ€™re SQL-interview ready!
๐Ÿ‘3
๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ!๐Ÿ˜

Want to break into Data Analytics but donโ€™t know where to start?

These 6 FREE courses cover everythingโ€”from Excel, SQL, Python, and Power BI to Business Math & Statistics and Portfolio Projects! ๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kMSztw

๐Ÿ“Œ Save this now and start learning today!
Python Pandas Beginner's Guide
๐Ÿ”ฅ2