Forwarded from Python | Machine Learning | Coding | R
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฅ flowty-realtime-lcm-canvas
A realtime sketch to image demo using LCM and the gradio library.
Source: https://github.com/flowtyone/flowty-realtime-lcm-canvas
๐ https://t.iss.one/CodeProgrammer
More Likes, Share, Subscribe ๐โค๏ธ
A realtime sketch to image demo using LCM and the gradio library.
Source: https://github.com/flowtyone/flowty-realtime-lcm-canvas
๐ https://t.iss.one/CodeProgrammer
More Likes, Share, Subscribe ๐โค๏ธ
๐1
๐ฃ HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation by Hierarchical Variational Inference for Zero-shot Speech Synthesis
๐ฅ Code: https://github.com/sh-lee-prml/hierspeechpp
๐ฆพ Checkpoint: https://drive.google.com/drive/folders/1-L_90BlCkbPyKWWHTUjt5Fsu3kz0du0w?usp=sharing
โก๏ธ Demo: https://sh-lee-prml.github.io/HierSpeechpp-demo/
๐ Paper: https://arxiv.org/abs/2311.12454v1
๐ Dataset: https://paperswithcode.com/dataset/libri-light
https://t.iss.one/DataScienceT
๐ฅ Code: https://github.com/sh-lee-prml/hierspeechpp
๐ฆพ Checkpoint: https://drive.google.com/drive/folders/1-L_90BlCkbPyKWWHTUjt5Fsu3kz0du0w?usp=sharing
โก๏ธ Demo: https://sh-lee-prml.github.io/HierSpeechpp-demo/
๐ Paper: https://arxiv.org/abs/2311.12454v1
๐ Dataset: https://paperswithcode.com/dataset/libri-light
https://t.iss.one/DataScienceT
ChessVision - A dataset for logically coherent multi-label classification.
๐ฅ Github: https://github.com/espressovi/chessvisionchallenge
๐ Paper: https://arxiv.org/pdf/2311.12610v1.pdf
โจ Tasks: https://paperswithcode.com/task/classification-1
https://t.iss.one/DataScienceT
๐ฅ Github: https://github.com/espressovi/chessvisionchallenge
๐ Paper: https://arxiv.org/pdf/2311.12610v1.pdf
โจ Tasks: https://paperswithcode.com/task/classification-1
https://t.iss.one/DataScienceT
๐1
๐ฅ Diffusion360: Seamless 360 Degree Panoramic Image Generation based on Diffusion Models.
๐ฅ Code: https://github.com/archerfmy/sd-t2i-360panoimage
๐ Paper: https://arxiv.org/abs/2311.13141v1
๐ Dataset: https://paperswithcode.com/dataset/sun360
https://t.iss.one/DataScienceT
๐ฅ Code: https://github.com/archerfmy/sd-t2i-360panoimage
๐ Paper: https://arxiv.org/abs/2311.13141v1
๐ Dataset: https://paperswithcode.com/dataset/sun360
https://t.iss.one/DataScienceT
๐3
๐ฎ Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch
๐ฅ Code: https://github.com/yule-BUAA/MergeLM
๐ Paper: https://arxiv.org/abs/2311.03099
๐ Dataset: https://paperswithcode.com/task/instruction-following
https://t.iss.one/DataScienceT
๐ฅ Code: https://github.com/yule-BUAA/MergeLM
๐ Paper: https://arxiv.org/abs/2311.03099
๐ Dataset: https://paperswithcode.com/task/instruction-following
https://t.iss.one/DataScienceT
๐3โค1
โ ChessVision - A dataset for logically coherent multi-label classification.
๐ฅ Github: https://github.com/wojciechkusa/systematic-review-datasets
๐ Paper: https://arxiv.org/pdf/2311.12474v1.pdf
โจ Tasks: https://paperswithcode.com/task/question-answering
๐ฅDatasets: https://paperswithcode.com/dataset/blurb
https://t.iss.one/DataScienceT
๐ฅ Github: https://github.com/wojciechkusa/systematic-review-datasets
๐ Paper: https://arxiv.org/pdf/2311.12474v1.pdf
โจ Tasks: https://paperswithcode.com/task/question-answering
๐ฅDatasets: https://paperswithcode.com/dataset/blurb
https://t.iss.one/DataScienceT
๐2
GraphEmb
๐ฅ Github: https://github.com/ubioinformat/graphemb
๐ Paper: https://arxiv.org/pdf/2311.12670v1.pdf
โจ Tasks: https://paperswithcode.com/task/benchmarking
https://t.iss.one/DataScienceT
๐ฅ Github: https://github.com/ubioinformat/graphemb
๐ Paper: https://arxiv.org/pdf/2311.12670v1.pdf
โจ Tasks: https://paperswithcode.com/task/benchmarking
https://t.iss.one/DataScienceT
Infant Action Recognition
๐ฅ Github: https://github.com/ostadabbas/video-based-infant-action-recognition
๐ Paper: https://arxiv.org/pdf/2311.12300v1.pdf
โจ Tasks: https://paperswithcode.com/task/action-recognition-in-videos
๐ฅDatasets: https://paperswithcode.com/dataset/ntu-rgb-d
๐ฅ Github: https://github.com/ostadabbas/video-based-infant-action-recognition
๐ Paper: https://arxiv.org/pdf/2311.12300v1.pdf
โจ Tasks: https://paperswithcode.com/task/action-recognition-in-videos
๐ฅDatasets: https://paperswithcode.com/dataset/ntu-rgb-d
๐2โค1
CSMeD: Citation Screening Meta-Dataset for systematic review automation evaluation
๐ฅ Github: https://github.com/wojciechkusa/systematic-review-datasets
๐ Paper: https://arxiv.org/pdf/2311.12474v1.pdf
โจ Tasks: https://paperswithcode.com/task/question-answering
๐ฅDatasets: https://paperswithcode.com/dataset/blurb
https://t.iss.one/DataScienceT
๐ฅ Github: https://github.com/wojciechkusa/systematic-review-datasets
๐ Paper: https://arxiv.org/pdf/2311.12474v1.pdf
โจ Tasks: https://paperswithcode.com/task/question-answering
๐ฅDatasets: https://paperswithcode.com/dataset/blurb
https://t.iss.one/DataScienceT
๐2
Forwarded from Data Science Books
Which one is your favorite Programming language?
Anonymous Poll
69%
Python
6%
Java/Kotlin
12%
C/C++/C#
5%
JavaScript/PHP
0%
Cobol/Perl/Pascal/LISP/ FORTRAN
4%
R
1%
Scala/Ruby
1%
Go/Swift
2%
MATLAB
2%
Not in the options
๐6
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฅ Seamless: Multilingual Expressive and Streaming Speech Translation
๐ฅHugging face demo: https://huggingface.co/collections/facebook/seamless-communication-6568d486ef451c6ba62c7724
โก๏ธ BLog: https://ai.meta.com/blog/seamless-communication/
๐ Paper: https://scontent.fbkk5-5.fna.fbcdn.net
๐ Demo: https://seamless.metademolab.com/expressive
๐ฅ Github: https://github.com/facebookresearch/seamless_communication
๐ฅHugging face demo: https://huggingface.co/collections/facebook/seamless-communication-6568d486ef451c6ba62c7724
โก๏ธ BLog: https://ai.meta.com/blog/seamless-communication/
๐ Paper: https://scontent.fbkk5-5.fna.fbcdn.net
๐ Demo: https://seamless.metademolab.com/expressive
๐ฅ Github: https://github.com/facebookresearch/seamless_communication
๐3
Probabilistic-Forecast-Reconciliation-with-DL
๐ฅ Github: https://github.com/guanyu0316/Probabilistic-Forecast-Reconciliation-with-DL
๐ Paper: https://arxiv.org/pdf/2311.12279v1.pdf
โจ Tasks: https://paperswithcode.com/task/time-series-1
๐ฅ Github: https://github.com/guanyu0316/Probabilistic-Forecast-Reconciliation-with-DL
๐ Paper: https://arxiv.org/pdf/2311.12279v1.pdf
โจ Tasks: https://paperswithcode.com/task/time-series-1
๐4
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฆพ StyleTTS 2: Towards Human-Level Text-to-Speech through Style Diffusion and Adversarial Training with Large Speech Language Models
๐ฅ Github: https://github.com/yl4579/StyleTTS2
๐ฅColab: https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/
โก๏ธ Demo: https://huggingface.co/spaces/styletts2/styletts2
๐ Paper: https://arxiv.org/abs/2306.07691
๐ Demo: https://seamless.metademolab.com/expressive
๐ฅฉ Page: styletts2.github.io
๐ฅ Github: https://github.com/yl4579/StyleTTS2
๐ฅColab: https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/
โก๏ธ Demo: https://huggingface.co/spaces/styletts2/styletts2
๐ Paper: https://arxiv.org/abs/2306.07691
๐ Demo: https://seamless.metademolab.com/expressive
๐ฅฉ Page: styletts2.github.io
๐7โคโ๐ฅ1
STOP WORKING โ START EARNING๐
Do you really like your salary? What about the time you spend at work? Is everything fair and square? Do you have a house, car, summer house? Let's be honestโฆ
๐ซตI urge you to forget about working for peanuts and start earning real money.
Subscribe to the Mark Trading channel today, and I'm confident that by tomorrow, you'll have made your first profit!
๐คซOn the channel, you'll find trading signals that you can easily copy even without experience!
https://t.iss.one/+mdMjDnomUa83NWJk
Do you really like your salary? What about the time you spend at work? Is everything fair and square? Do you have a house, car, summer house? Let's be honestโฆ
๐ซตI urge you to forget about working for peanuts and start earning real money.
Subscribe to the Mark Trading channel today, and I'm confident that by tomorrow, you'll have made your first profit!
https://t.iss.one/+mdMjDnomUa83NWJk
๐5
Towards Learning a Generalist Model for Embodied Navigation
๐ฅ Github: https://github.com/zd11024/NaviLLM
๐ Paper: https://arxiv.org/pdf/2312.02010v1.pdf
๐ฅDatasets: https://paperswithcode.com/dataset/room-to-room
โจ Tasks: https://paperswithcode.com/task/3d-question-answering-3d-qa
๐ฅ Github: https://github.com/zd11024/NaviLLM
๐ Paper: https://arxiv.org/pdf/2312.02010v1.pdf
๐ฅDatasets: https://paperswithcode.com/dataset/room-to-room
โจ Tasks: https://paperswithcode.com/task/3d-question-answering-3d-qa
๐5
This media is not supported in your browser
VIEW IN TELEGRAM
Paved2Paradise
๐ฅ Github: https://github.com/airalcorn2/paved2paradise
๐ Paper: https://arxiv.org/pdf/2312.01117v1.pdf
๐ฅDatasets: https://paperswithcode.com/dataset/kitti
๐ฅ Github: https://github.com/airalcorn2/paved2paradise
๐ Paper: https://arxiv.org/pdf/2312.01117v1.pdf
๐ฅDatasets: https://paperswithcode.com/dataset/kitti
โค1
Forwarded from Python | Machine Learning | Coding | R
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Subscribe in our Channel in WhatsApp
There are exclusive surprises for those who join our WhatsApp channel
Subscribe in our Channel in WhatsApp
There are exclusive surprises for those who join our WhatsApp channel
WhatsApp.com
Python | Machine Learning | Data Science | WhatsApp Channel
Python | Machine Learning | Data Science WhatsApp Channel. Welcome to our official WhatsApp Channel โ your daily dose of AI, Python, and cutting-edge technology!
Here, we share:
Python tutorials and ready-to-use code snippets
AI & machine learning tipsโฆ
Here, we share:
Python tutorials and ready-to-use code snippets
AI & machine learning tipsโฆ
๐ฅ Hitchhiker's Guide to Python
Python Best Practices Guidebook
A guide to best practices for installing, configuring and using Python on a daily basis, including pip, numpy, virtualenv and more.
Resources: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A/110
Python Best Practices Guidebook
A guide to best practices for installing, configuring and using Python on a daily basis, including pip, numpy, virtualenv and more.
Resources: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A/110
๐2