🧠 LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios.
🖥 Github: https://github.com/opendilab/LightZero
📕 Paper: https://arxiv.org/abs/2310.08348v1
⭐️ Tasks: https://paperswithcode.com/task/atari-games
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/opendilab/LightZero
📕 Paper: https://arxiv.org/abs/2310.08348v1
⭐️ Tasks: https://paperswithcode.com/task/atari-games
https://t.iss.one/DataScienceT
👍1
🔥 Burn - A Flexible and Comprehensive Deep Learning Framework in Rust
🖥 Github: https://github.com/burn-rs/burn
📕 Burn Book: https://burn-rs.github.io/book/
⭐️ Guide: https://www.kdnuggets.com/rust-burn-library-for-deep-learning
https://t.iss.one/DataScienceT
cargo new new_burn_app
🖥 Github: https://github.com/burn-rs/burn
📕 Burn Book: https://burn-rs.github.io/book/
⭐️ Guide: https://www.kdnuggets.com/rust-burn-library-for-deep-learning
https://t.iss.one/DataScienceT
👍6❤1
This media is not supported in your browser
VIEW IN TELEGRAM
✨ Cross-Episodic Curriculum for Transformer Agents
🖥 Github: https://github.com/CEC-Agent/CEC
📕 Paper: https://cec-agent.github.io/src/bib.txt
⭐️ Project: https://cec-agent.github.io
https://t.iss.one/DataScienceT
pip install git+https://github.com/cec-agent/CEC
🖥 Github: https://github.com/CEC-Agent/CEC
📕 Paper: https://cec-agent.github.io/src/bib.txt
⭐️ Project: https://cec-agent.github.io
https://t.iss.one/DataScienceT
❤1
👨 AG3D: Learning to Generate 3D Avatars from 2D Image Collections (ICCV 2023)
🖥 Github: https://github.com/zj-dong/AG3D
📕 Paper: https://arxiv.org/abs/2305.02312
🚀Video: https://youtu.be/niP1YhJXEBE
⭐️ Project: https://zj-dong.github.io/AG3D/
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/zj-dong/AG3D
📕 Paper: https://arxiv.org/abs/2305.02312
🚀Video: https://youtu.be/niP1YhJXEBE
⭐️ Project: https://zj-dong.github.io/AG3D/
https://t.iss.one/DataScienceT
👍2
FER
🖥 Github: https://github.com/ict-bigdatalab/fer
📕 Paper: https://arxiv.org/pdf/2310.11868v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/fever
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/ict-bigdatalab/fer
📕 Paper: https://arxiv.org/pdf/2310.11868v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/fever
https://t.iss.one/DataScienceT
👍1
🐾 Putting the Object Back into Video Object Segmentation (Cutie)
🖥 Github: https://github.com/hkchengrex/Cutie
🖥 Colab: https://colab.research.google.com/drive/1yo43XTbjxuWA7XgCUO9qxAi7wBI6HzvP?usp=sharing
📕 Paper: https://arxiv.org/abs/2310.12982v1
🚀Project: https://hkchengrex.github.io/Cutie/
https://t.iss.one/DataScienceT
git clone https://github.com/hkchengrex/Cutie.git
🖥 Github: https://github.com/hkchengrex/Cutie
🖥 Colab: https://colab.research.google.com/drive/1yo43XTbjxuWA7XgCUO9qxAi7wBI6HzvP?usp=sharing
📕 Paper: https://arxiv.org/abs/2310.12982v1
🚀Project: https://hkchengrex.github.io/Cutie/
https://t.iss.one/DataScienceT
👍1
🖥 AutoGen
AutoGen provides multi-agent conversation framework as a high-level abstraction.
🖥 Github: https://github.com/microsoft/autogen
📕 Project: https://microsoft.github.io/autogen/
🤗 FLAML.: https://github.com/microsoft/FLAML
https://t.iss.one/DataScienceT
AutoGen provides multi-agent conversation framework as a high-level abstraction.
🖥 Github: https://github.com/microsoft/autogen
📕 Project: https://microsoft.github.io/autogen/
🤗 FLAML.: https://github.com/microsoft/FLAML
https://t.iss.one/DataScienceT
👍2❤1
DD-Net
🖥 Github: https://github.com/fandulu/DD-Net
📕 Paper: https://arxiv.org/pdf/1907.09658.pdf
🔥 Datasets: https://paperswithcode.com/dataset/gtea
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/fandulu/DD-Net
📕 Paper: https://arxiv.org/pdf/1907.09658.pdf
🔥 Datasets: https://paperswithcode.com/dataset/gtea
https://t.iss.one/DataScienceT
❤1👍1
Forwarded from Data Science Books
Special offer: The price of subscribing to the paid channel has become only $4 for two hours only
Link channel (pay first):
https://t.iss.one/+LnCmAFJO3tNmYjUy
take the chance: @Hussein_sheikho
Link channel (pay first):
https://t.iss.one/+LnCmAFJO3tNmYjUy
take the chance: @Hussein_sheikho
✅ Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model
🖥 Github: https://github.com/sudo-ai-3d/zero123plus
📕 Paper: https://arxiv.org/abs/2310.15110v1
⭐️ Demo: https://huggingface.co/spaces/sudo-ai/zero123plus-demo-space
🚀Dataset: https://paperswithcode.com/dataset/shapenet
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/sudo-ai-3d/zero123plus
📕 Paper: https://arxiv.org/abs/2310.15110v1
⭐️ Demo: https://huggingface.co/spaces/sudo-ai/zero123plus-demo-space
🚀Dataset: https://paperswithcode.com/dataset/shapenet
https://t.iss.one/DataScienceT
❤2👍2
Forwarded from Eng. Hussein Sheikho 👨💻
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ https://t.iss.one/addlist/8_rRW2scgfRhOTc0
✅ https://t.iss.one/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ https://t.iss.one/addlist/8_rRW2scgfRhOTc0
✅ https://t.iss.one/DataScienceM
🔇 Efficient Large-Scale Audio Tagging
🖥 Github: https://github.com/fschmid56/efficientat
📕 Paper: https://arxiv.org/abs/2310.15648v1
⏩ Demo: https://21527a47f03813481c.gradio.live/
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/fschmid56/efficientat
📕 Paper: https://arxiv.org/abs/2310.15648v1
⏩ Demo: https://21527a47f03813481c.gradio.live/
https://t.iss.one/DataScienceT
SALMONN: Speech Audio Language Music Open Neural Network
🖥 Github: https://github.com/bytedance/salmonn
📕 Paper: https://arxiv.org/pdf/2310.13289v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/librispeech
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/bytedance/salmonn
📕 Paper: https://arxiv.org/pdf/2310.13289v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/librispeech
https://t.iss.one/DataScienceT
❤1👍1
#210th_quiz
Which of the following is a method used to evaluate the performance of a classification algorithm?
Which of the following is a method used to evaluate the performance of a classification algorithm?
Anonymous Quiz
55%
F1 score
19%
Mean squared error
14%
Pearson correlation coefficient
12%
R-squared score
👍2