Dynamic Low-Rank Instance Adaptation for Universal Neural Image Compression
🖥 Github: https://github.com/llvy21/duic
📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pixel-art
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/llvy21/duic
📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pixel-art
https://t.iss.one/DataScienceT
👍4
LibCity
🖥 Github: https://github.com/libcity/bigscity-libcity
📕 Paper: https://arxiv.org/pdf/2308.12899v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/taxibj
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/libcity/bigscity-libcity
📕 Paper: https://arxiv.org/pdf/2308.12899v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/taxibj
https://t.iss.one/DataScienceT
👍4
S3A: Towards Realistic Zero-Shot Classification via Self Structural Semantic Alignment
🖥 Github: https://github.com/sheng-eatamath/s3a
📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-100
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/sheng-eatamath/s3a
📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-100
https://t.iss.one/DataScienceT
❤4👍1
Forwarded from Python | Machine Learning | Coding | R
🖥 Roadmap of free courses for learning Python and Machine learning.
▪Data Science
▪ AI/ML
▪ Web Dev
1. Start with this
https://kaggle.com/learn/python
2. Take any one of these
❯ https://openclassrooms.com/courses/6900856-learn-programming-with-python
❯ https://scaler.com/topics/course/python-for-beginners/
❯ https://simplilearn.com/learn-python-basics-free-course-skillup
3. Then take this
https://netacad.com/courses/programming/pcap-programming-essentials-python
4. Attempt for this certification
https://freecodecamp.org/learn/scientific-computing-with-python/
5. Take it to next level
❯ Data Scrapping, NumPy, Pandas
https://scaler.com/topics/course/python-for-data-science/
❯ Data Analysis
https://openclassrooms.com/courses/2304731-learn-python-basics-for-data-analysis
❯ Data Visualization
https://kaggle.com/learn/data-visualization
❯ Django
https://openclassrooms.com/courses/6967196-create-a-web-application-with-django
❯ Machine Learning
https://developers.google.com/machine-learning/crash-course
❯ Deep Learning (TensorFlow)
https://kaggle.com/learn/intro-to-deep-learning
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
▪Data Science
▪ AI/ML
▪ Web Dev
1. Start with this
https://kaggle.com/learn/python
2. Take any one of these
❯ https://openclassrooms.com/courses/6900856-learn-programming-with-python
❯ https://scaler.com/topics/course/python-for-beginners/
❯ https://simplilearn.com/learn-python-basics-free-course-skillup
3. Then take this
https://netacad.com/courses/programming/pcap-programming-essentials-python
4. Attempt for this certification
https://freecodecamp.org/learn/scientific-computing-with-python/
5. Take it to next level
❯ Data Scrapping, NumPy, Pandas
https://scaler.com/topics/course/python-for-data-science/
❯ Data Analysis
https://openclassrooms.com/courses/2304731-learn-python-basics-for-data-analysis
❯ Data Visualization
https://kaggle.com/learn/data-visualization
❯ Django
https://openclassrooms.com/courses/6967196-create-a-web-application-with-django
❯ Machine Learning
https://developers.google.com/machine-learning/crash-course
❯ Deep Learning (TensorFlow)
https://kaggle.com/learn/intro-to-deep-learning
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
❤13👍10
🐕 Reprogramming Under Constraints
🖥 Github: https://github.com/landskape-ai/reprogram_lt
📕 Paper: https://arxiv.org/pdf/2308.14969v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/landskape-ai/reprogram_lt
📕 Paper: https://arxiv.org/pdf/2308.14969v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
https://t.iss.one/DataScienceT
❤1👍1
Forwarded from Python | Machine Learning | Coding | R
🔥 Master Data Science for free
📂 Computer Science 101
https://online.stanford.edu/courses/soe-ycscs101-computer-science-101
📂 Machine Learning Specialization
https://coursera.org/specializations/machine-learning-introduction
📂 Artificial Intelligence for Robotics
https://udacity.com/course/artificial-intelligence-for-robotics--cs373
📂 Designing Your Career
https://online.stanford.edu/courses/tds-y0003-designing-your-career
📂 Stanford: Game Theory
https://online.stanford.edu/courses/soe-ycs0002-game-theory
📂 Machine Learning with Python
https://www.freecodecamp.org/learn/machine-learning-with-python/
📂 Probability and Statistics: To P or Not To P? (Coursera)
https://www.coursera.org/learn/probability-statistics
📂 Numpy complete free course
https://www.youtube.com/playlist?list=PLysMDSbb9Hcz3Gdi9oV-btohZ9zhths-r
📂Advanced Machine Learning
https://www.kaggle.com/learn/intro-to-machine-learning
📂 Stat 110: Harvard University (YouTube)
https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=1
📂 The Open Source Data Science Masters
https://github.com/datasciencemasters/go
📂 Google - artificial intelligence for everyone
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone
📂Microsoft - AI for Beginners
https://microsoft.github.io/AI-For-Beginners
📂 IBM - AI for Everyone: Master the Basics
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics
📂 Harvard - Introduction to Artificial Intelligence with Python
https://cs50.harvard.edu/ai/2023
📂 Introduction to Generative AI
https://cloudskillsboost.google/journeys/118
📂 Deep Learning - Finetuning Large Language Models
https://deeplearning.ai/short-courses/finetuning-large-language-models/
📂Microsoft - AI Basics in Azure
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/
https://t.iss.one/CodeProgrammer
📂Linux Foundation
https://edx.org/learn/computer-programming/the-linux-foundation-data-and-ai-fundamentals
📂 12 Linux courses:
https://t.iss.one/linuxkalii/538
📂 Alison - 13 free AI courses
https://alison.com/tag/artificial-intelligence
📂 Artificial Intelligence Projects:
https://mygreatlearning.com/academy/learn-for-free/courses/artificial-intelligence-projects
📂 Introduction to Internet of Things:
https://online.stanford.edu/courses/xee100-introduction-internet-things
📂 Graph Search, Shortest Paths, and Data Structures
https://coursera.org/learn/algorithms-graphs-data-structures
📂 Python:
https://cs50.harvard.edu/python/2022/
📂 Machine Learning:
https://developers.google.com/machine-learning/crash-course
📂 Deep Learning
https://introtodeeplearning.com
📂 Data Analysis
https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis
📂 Linear algebra:
https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra
📂 Algebra basics
https://www.khanacademy.org/math/algebra-basics
📂 Excel and PowerBI
https://learn.microsoft.com/training/paths/modern-analytics/
📂 Data visualization:
https://pll.harvard.edu/course/data-science-visualization
📂 PowerBI
https://learn.microsoft.com/users/collinschedler-0717/collections/m14nt4rdwnwp04
📂 Tableau:
https://tableau.com/learn/training
📂 Statistics:
https://cognitiveclass.ai/courses/statistics-101
📂 SQL:
https://online.stanford.edu/courses/soe-ydatabases0005-databases-relational-databases-and-sql
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
📂 Computer Science 101
https://online.stanford.edu/courses/soe-ycscs101-computer-science-101
📂 Machine Learning Specialization
https://coursera.org/specializations/machine-learning-introduction
📂 Artificial Intelligence for Robotics
https://udacity.com/course/artificial-intelligence-for-robotics--cs373
📂 Designing Your Career
https://online.stanford.edu/courses/tds-y0003-designing-your-career
📂 Stanford: Game Theory
https://online.stanford.edu/courses/soe-ycs0002-game-theory
📂 Machine Learning with Python
https://www.freecodecamp.org/learn/machine-learning-with-python/
📂 Probability and Statistics: To P or Not To P? (Coursera)
https://www.coursera.org/learn/probability-statistics
📂 Numpy complete free course
https://www.youtube.com/playlist?list=PLysMDSbb9Hcz3Gdi9oV-btohZ9zhths-r
📂Advanced Machine Learning
https://www.kaggle.com/learn/intro-to-machine-learning
📂 Stat 110: Harvard University (YouTube)
https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=1
📂 The Open Source Data Science Masters
https://github.com/datasciencemasters/go
📂 Google - artificial intelligence for everyone
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone
📂Microsoft - AI for Beginners
https://microsoft.github.io/AI-For-Beginners
📂 IBM - AI for Everyone: Master the Basics
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics
📂 Harvard - Introduction to Artificial Intelligence with Python
https://cs50.harvard.edu/ai/2023
📂 Introduction to Generative AI
https://cloudskillsboost.google/journeys/118
📂 Deep Learning - Finetuning Large Language Models
https://deeplearning.ai/short-courses/finetuning-large-language-models/
📂Microsoft - AI Basics in Azure
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/
https://t.iss.one/CodeProgrammer
📂Linux Foundation
https://edx.org/learn/computer-programming/the-linux-foundation-data-and-ai-fundamentals
📂 12 Linux courses:
https://t.iss.one/linuxkalii/538
📂 Alison - 13 free AI courses
https://alison.com/tag/artificial-intelligence
📂 Artificial Intelligence Projects:
https://mygreatlearning.com/academy/learn-for-free/courses/artificial-intelligence-projects
📂 Introduction to Internet of Things:
https://online.stanford.edu/courses/xee100-introduction-internet-things
📂 Graph Search, Shortest Paths, and Data Structures
https://coursera.org/learn/algorithms-graphs-data-structures
📂 Python:
https://cs50.harvard.edu/python/2022/
📂 Machine Learning:
https://developers.google.com/machine-learning/crash-course
📂 Deep Learning
https://introtodeeplearning.com
📂 Data Analysis
https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis
📂 Linear algebra:
https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra
📂 Algebra basics
https://www.khanacademy.org/math/algebra-basics
📂 Excel and PowerBI
https://learn.microsoft.com/training/paths/modern-analytics/
📂 Data visualization:
https://pll.harvard.edu/course/data-science-visualization
📂 PowerBI
https://learn.microsoft.com/users/collinschedler-0717/collections/m14nt4rdwnwp04
📂 Tableau:
https://tableau.com/learn/training
📂 Statistics:
https://cognitiveclass.ai/courses/statistics-101
📂 SQL:
https://online.stanford.edu/courses/soe-ydatabases0005-databases-relational-databases-and-sql
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
❤17👍11
imbalanced-DL: Deep Imbalanced Learning in Python
🖥 Github: https://github.com/ntucllab/imbalanced-dl
📕 Paper: https://arxiv.org/pdf/2308.15457v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/ntucllab/imbalanced-dl
📕 Paper: https://arxiv.org/pdf/2308.15457v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
https://t.iss.one/DataScienceT
❤5👍2
💻PyGraft: Configurable Generation of Schemas and Knowledge Graphs at Your Fingertips
🖥 Github: https://github.com/nicolas-hbt/pygraft
📕 Paper: https://arxiv.org/abs/2309.03685
⭐️ Docs: https://pygraft.readthedocs.io/en/latest/
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/nicolas-hbt/pygraft
📕 Paper: https://arxiv.org/abs/2309.03685
⭐️ Docs: https://pygraft.readthedocs.io/en/latest/
https://t.iss.one/DataScienceT
❤3👍1
Forwarded from Eng. Hussein Sheikho 👨💻
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ https://t.iss.one/addlist/8_rRW2scgfRhOTc0
✅ https://t.iss.one/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ https://t.iss.one/addlist/8_rRW2scgfRhOTc0
✅ https://t.iss.one/DataScienceM
👍4
Forwarded from Python | Machine Learning | Coding | R
🖥 Free Courses and Guides That Will Teach You How to Master AI:
📂 Elements of AI
https://elementsofai.com
📂 Learn Prompting
https://learnprompting.org
📂 Machine Learning
https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning
📂 AI for everyone
https://coursera.org/learn/ai-for-everyone
📂 500+ AI Chatbot Prompt Templates
https://theveller.gumroad.com/l/ChatGPTPromptTemplates-byTheVeller
📂 Prompt Engineering
https://youtu.be/_ZvnD73m40o
📂 ChatGPT Prompt Engineering for Developers
https://deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers
📂 Google — AI for Anyone
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone
📂 Microsoft — AI For Beginners
https://microsoft.github.io/AI-For-Beginners
📂 IBM — AI for Everyone: Master the Basics
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics
📂 Google — Introduction to Generative AI
https://cloudskillsboost.google/journeys/118
📂 DeepLearning — Finetuning LLMs
https://deeplearning.ai/short-courses/finetuning-large-language-models
https://t.iss.one/CodeProgrammer
Please more 100 👍 with our posts
📂 Elements of AI
https://elementsofai.com
📂 Learn Prompting
https://learnprompting.org
📂 Machine Learning
https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning
📂 AI for everyone
https://coursera.org/learn/ai-for-everyone
📂 500+ AI Chatbot Prompt Templates
https://theveller.gumroad.com/l/ChatGPTPromptTemplates-byTheVeller
📂 Prompt Engineering
https://youtu.be/_ZvnD73m40o
📂 ChatGPT Prompt Engineering for Developers
https://deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers
📂 Google — AI for Anyone
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone
📂 Microsoft — AI For Beginners
https://microsoft.github.io/AI-For-Beginners
📂 IBM — AI for Everyone: Master the Basics
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics
📂 Google — Introduction to Generative AI
https://cloudskillsboost.google/journeys/118
📂 DeepLearning — Finetuning LLMs
https://deeplearning.ai/short-courses/finetuning-large-language-models
https://t.iss.one/CodeProgrammer
Please more 100 👍 with our posts
👍21❤1🏆1
Here's a list of 50+ Python libraries for data science👇
1. NumPy - "Handles arrays and math operations efficiently."
2. pandas - "Data manipulation made easy with data frames."
3. Matplotlib - "Plots and charts for data visualization."
4. Seaborn - "Creates attractive statistical plots."
5. SciPy - "Scientific and technical computing toolkit."
6. scikit-learn - "Machine learning at your fingertips."
7. TensorFlow - "For deep learning and neural networks."
8. Keras - "High-level deep learning API."
9. PyTorch - "Deep learning framework for researchers."
10. Statsmodels - "Statistical models and tests."
11. NLTK - "Natural language processing toolkit."
12. Gensim - "Topic modeling and document similarity."
13. XGBoost - "Gradient boosting for better predictions."
14. LightGBM - "Efficient gradient boosting framework."
15. CatBoost - "Optimized gradient boosting for categories."
16. NetworkX - "Build and analyze networks and graphs."
17. Beautiful Soup - "HTML and XML parsing made simple."
18. Requests - "Effortless HTTP requests."
19. SQLAlchemy - "Relational database interactions."
20. Pandas Profiling - "Generate data reports quickly."
21. Featuretools - "Automated feature engineering."
22. H2O - "Open-source machine learning platform."
23. Yellowbrick - "Visualize machine learning results."
24. Plotly - "Interactive and shareable plots."
25. Dash - "Build web apps for data visualization."
26. Flask - "Lightweight web app framework."
27. Streamlit - "Create apps with minimal code."
28. Bokeh - "Interactive web-based visualization."
29. GeoPandas - "Geospatial data analysis made easy."
30. Altair - "Declarative statistical visualization."
31. Prophet - "Time series forecasting with ease."
32. Feature-engine - "Feature engineering for ML."
33. Dask - "Parallel computing for big data."
34. Vaex - "Efficient dataframes for big data."
35. Optuna - "Automated hyperparameter tuning."
36. imbalanced-learn - "Handling imbalanced datasets."
37. Eli5 - "Interpret machine learning models."
38. SHAP - "Explainability for ML models."
39. scikit-image - "Image processing in Python."
40. TextBlob - "Text processing and sentiment analysis."
41. Polars - "Fast DataFrame library."
42. Cufflinks - "Combines Plotly with pandas."
43. TA-Lib - "Technical analysis for financial data."
44. OpenCV - "Computer vision and image processing."
45. Pymc3 - "Probabilistic programming for Bayesian analysis."
46. Scrapy - "Web scraping toolkit."
47. PySpark - "Apache Spark for big data processing."
48. PyArrow - "Columnar data format for analytics."
49. OptimalFlow - "AutoML for data scientists."
50. Pycaret - "Automated machine learning toolkit."
These libraries cover a wide range of data science tasks, from data manipulation and visualisation to machine learning and deep learning, making them essential tools for any data scientist or Python programmer.
https://t.iss.one/DataScienceT
1. NumPy - "Handles arrays and math operations efficiently."
2. pandas - "Data manipulation made easy with data frames."
3. Matplotlib - "Plots and charts for data visualization."
4. Seaborn - "Creates attractive statistical plots."
5. SciPy - "Scientific and technical computing toolkit."
6. scikit-learn - "Machine learning at your fingertips."
7. TensorFlow - "For deep learning and neural networks."
8. Keras - "High-level deep learning API."
9. PyTorch - "Deep learning framework for researchers."
10. Statsmodels - "Statistical models and tests."
11. NLTK - "Natural language processing toolkit."
12. Gensim - "Topic modeling and document similarity."
13. XGBoost - "Gradient boosting for better predictions."
14. LightGBM - "Efficient gradient boosting framework."
15. CatBoost - "Optimized gradient boosting for categories."
16. NetworkX - "Build and analyze networks and graphs."
17. Beautiful Soup - "HTML and XML parsing made simple."
18. Requests - "Effortless HTTP requests."
19. SQLAlchemy - "Relational database interactions."
20. Pandas Profiling - "Generate data reports quickly."
21. Featuretools - "Automated feature engineering."
22. H2O - "Open-source machine learning platform."
23. Yellowbrick - "Visualize machine learning results."
24. Plotly - "Interactive and shareable plots."
25. Dash - "Build web apps for data visualization."
26. Flask - "Lightweight web app framework."
27. Streamlit - "Create apps with minimal code."
28. Bokeh - "Interactive web-based visualization."
29. GeoPandas - "Geospatial data analysis made easy."
30. Altair - "Declarative statistical visualization."
31. Prophet - "Time series forecasting with ease."
32. Feature-engine - "Feature engineering for ML."
33. Dask - "Parallel computing for big data."
34. Vaex - "Efficient dataframes for big data."
35. Optuna - "Automated hyperparameter tuning."
36. imbalanced-learn - "Handling imbalanced datasets."
37. Eli5 - "Interpret machine learning models."
38. SHAP - "Explainability for ML models."
39. scikit-image - "Image processing in Python."
40. TextBlob - "Text processing and sentiment analysis."
41. Polars - "Fast DataFrame library."
42. Cufflinks - "Combines Plotly with pandas."
43. TA-Lib - "Technical analysis for financial data."
44. OpenCV - "Computer vision and image processing."
45. Pymc3 - "Probabilistic programming for Bayesian analysis."
46. Scrapy - "Web scraping toolkit."
47. PySpark - "Apache Spark for big data processing."
48. PyArrow - "Columnar data format for analytics."
49. OptimalFlow - "AutoML for data scientists."
50. Pycaret - "Automated machine learning toolkit."
These libraries cover a wide range of data science tasks, from data manipulation and visualisation to machine learning and deep learning, making them essential tools for any data scientist or Python programmer.
https://t.iss.one/DataScienceT
❤22👍13🏆5
ResFields: Residual Neural Fields for Spatiotemporal Signals
🖥 Github: https://github.com/markomih/ResFields
📕 Paper: https://arxiv.org/pdf/2309.03160.pdf
🔥 Dataset: https://paperswithcode.com/dataset/nerf
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/markomih/ResFields
📕 Paper: https://arxiv.org/pdf/2309.03160.pdf
🔥 Dataset: https://paperswithcode.com/dataset/nerf
https://t.iss.one/DataScienceT
❤16👍8
🚩 Towards the TopMost: A Topic Modeling System Toolkit
The highly cohesive and decoupled modular design of TopMost enables quick utilization, fair comparisons, and flexible extensions of different topic models.
🖥 Github: https://github.com/bobxwu/topmost
📕 Paper: https://arxiv.org/abs/2309.06908v1
⏩ Docs: https://topmost.readthedocs.io/
⭐️ Dataset: https://paperswithcode.com/dataset/imdb-movie-reviews
https://t.iss.one/DataScienceT
The highly cohesive and decoupled modular design of TopMost enables quick utilization, fair comparisons, and flexible extensions of different topic models.
$ pip install topmost
🖥 Github: https://github.com/bobxwu/topmost
📕 Paper: https://arxiv.org/abs/2309.06908v1
⏩ Docs: https://topmost.readthedocs.io/
⭐️ Dataset: https://paperswithcode.com/dataset/imdb-movie-reviews
https://t.iss.one/DataScienceT
❤9👍5