🧑💻DeciCoder: A new open-source LLM, specialized for generating code in Python, Java, and Javascript..
- parameters: 1 B
- dataset: 'The Stack' dataset
- supports: Python, Javascript, Java
- context: 2048 tokens
▪Model
▪Colab
▪Dataset
https://t.iss.one/DataScienceT
- parameters: 1 B
- dataset: 'The Stack' dataset
- supports: Python, Javascript, Java
- context: 2048 tokens
▪Model
▪Colab
▪Dataset
https://t.iss.one/DataScienceT
👍5❤2
✔️ DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local Feature Matching
🖥 Github: https://github.com/parskatt/dedode
☑️ TensorRT: https://github.com/fabio-sim/DeDoDe-ONNX-TensorRT
📕 Paper: https://arxiv.org/abs/2308.08479
⭐️ Demos: https://github.com/Parskatt/DeDoDe/blob/main/demo
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/parskatt/dedode
☑️ TensorRT: https://github.com/fabio-sim/DeDoDe-ONNX-TensorRT
📕 Paper: https://arxiv.org/abs/2308.08479
⭐️ Demos: https://github.com/Parskatt/DeDoDe/blob/main/demo
https://t.iss.one/DataScienceT
👍2❤1
Forwarded from Python | Machine Learning | Coding | R
Our page on Reddit App
https://www.reddit.com/r/DataSciencePy
https://www.reddit.com/r/DataSciencePy
This media is not supported in your browser
VIEW IN TELEGRAM
💨CoDeF: Content Deformation Fields for Temporally Consistent Video Processing
🖥 Github: https://github.com/qiuyu96/codef
☑️ Project: https://qiuyu96.github.io/CoDeF/
📕 Paper: https://arxiv.org/abs/2308.07926
⭐️ Demo: https://ezioby.github.io/CoDeF_Demo/
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/qiuyu96/codef
☑️ Project: https://qiuyu96.github.io/CoDeF/
📕 Paper: https://arxiv.org/abs/2308.07926
⭐️ Demo: https://ezioby.github.io/CoDeF_Demo/
https://t.iss.one/DataScienceT
👍3
EQ-Net: Elastic Quantization Neural Networks
🖥 Github: https://github.com/xuke225/eq-net
📕 Paper: https://arxiv.org/pdf/2308.07650v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/xuke225/eq-net
📕 Paper: https://arxiv.org/pdf/2308.07650v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
❤🔥1👍1
☄️Dataset Quantization
DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training.
🖥 Github: https://github.com/magic-research/dataset_quantization
📕 Paper: https://arxiv.org/abs/2308.10524v1
☑️ Dataset: https://paperswithcode.com/dataset/gsm8k
https://t.iss.one/DataScienceT
DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training.
git clone https://github.com/vimar-gu/DQ.git
cd DQ
🖥 Github: https://github.com/magic-research/dataset_quantization
📕 Paper: https://arxiv.org/abs/2308.10524v1
☑️ Dataset: https://paperswithcode.com/dataset/gsm8k
https://t.iss.one/DataScienceT
👍5❤2
Forwarded from Data Science Books
Machine Learning for Data Science Handbook (2023)
This book is available now only in paid channel
Pages: 975 pages
Rate: ⭐️⭐️⭐️⭐️⭐️
Cost of subscription in Paid channel is 5$ for one time and forever
Channel link: https://t.iss.one/+LnCmAFJO3tNmYjUy
Paid channel contain important book and udemy and other courses as zip files
Welcome all
Contact @Hussein_sheikho
This book is available now only in paid channel
Pages: 975 pages
Rate: ⭐️⭐️⭐️⭐️⭐️
Cost of subscription in Paid channel is 5$ for one time and forever
Channel link: https://t.iss.one/+LnCmAFJO3tNmYjUy
Paid channel contain important book and udemy and other courses as zip files
Welcome all
Contact @Hussein_sheikho
👍4
Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition
🖥 Github: https://github.com/osvai/ske2grid
📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ucf101
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/osvai/ske2grid
📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ucf101
https://t.iss.one/DataScienceT
👍2
EQ-Net: Elastic Quantization Neural Networks
🖥 Github: https://github.com/xuke225/eq-net
📕 Paper: https://arxiv.org/pdf/2308.07650v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/xuke225/eq-net
📕 Paper: https://arxiv.org/pdf/2308.07650v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
👍3❤1
This media is not supported in your browser
VIEW IN TELEGRAM
🏅MixSort
MixSort is the proposed baseline tracker in SportMOT.
🖥 Github: https://github.com/MCG-NJU/MixSort
📕 Paper: https://arxiv.org/pdf/2304.05170.pdf
⭐️ SportsMOT: https://github.com/MCG-NJU/SportsMOT
https://t.iss.one/DataScienceT
MixSort is the proposed baseline tracker in SportMOT.
🖥 Github: https://github.com/MCG-NJU/MixSort
📕 Paper: https://arxiv.org/pdf/2304.05170.pdf
⭐️ SportsMOT: https://github.com/MCG-NJU/SportsMOT
https://t.iss.one/DataScienceT
❤4👍1
⚡prompt2model - Generate Deployable Models from Instructions
prompt2model - Generate Deployable Models from Natural Language Instructions
🖥 Github: https://github.com/neulab/prompt2model
📕 Paper: https://arxiv.org/abs/2308.12261v1
⭐️ Demo: https://github.com/facebookresearch/sonar#usage
☑️ Dataset: https://paperswithcode.com/dataset/mconala
https://t.iss.one/DataScienceT
prompt2model - Generate Deployable Models from Natural Language Instructions
pip install prompt2model
🖥 Github: https://github.com/neulab/prompt2model
📕 Paper: https://arxiv.org/abs/2308.12261v1
⭐️ Demo: https://github.com/facebookresearch/sonar#usage
☑️ Dataset: https://paperswithcode.com/dataset/mconala
https://t.iss.one/DataScienceT
❤3👍3
🔥Dense Text-to-Image Generation with Attention Modulation
DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.
🖥 Github: https://github.com/naver-ai/densediffusion
📕 Paper: https://arxiv.org/abs/2308.12964v1
⭐️ Dataset: https://paperswithcode.com/dataset/coco
https://t.iss.one/DataScienceT
DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.
🖥 Github: https://github.com/naver-ai/densediffusion
📕 Paper: https://arxiv.org/abs/2308.12964v1
⭐️ Dataset: https://paperswithcode.com/dataset/coco
https://t.iss.one/DataScienceT
👍3
Dynamic Low-Rank Instance Adaptation for Universal Neural Image Compression
🖥 Github: https://github.com/llvy21/duic
📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pixel-art
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/llvy21/duic
📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pixel-art
https://t.iss.one/DataScienceT
👍4
LibCity
🖥 Github: https://github.com/libcity/bigscity-libcity
📕 Paper: https://arxiv.org/pdf/2308.12899v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/taxibj
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/libcity/bigscity-libcity
📕 Paper: https://arxiv.org/pdf/2308.12899v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/taxibj
https://t.iss.one/DataScienceT
👍4
S3A: Towards Realistic Zero-Shot Classification via Self Structural Semantic Alignment
🖥 Github: https://github.com/sheng-eatamath/s3a
📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-100
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/sheng-eatamath/s3a
📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-100
https://t.iss.one/DataScienceT
❤4👍1
Forwarded from Python | Machine Learning | Coding | R
🖥 Roadmap of free courses for learning Python and Machine learning.
▪Data Science
▪ AI/ML
▪ Web Dev
1. Start with this
https://kaggle.com/learn/python
2. Take any one of these
❯ https://openclassrooms.com/courses/6900856-learn-programming-with-python
❯ https://scaler.com/topics/course/python-for-beginners/
❯ https://simplilearn.com/learn-python-basics-free-course-skillup
3. Then take this
https://netacad.com/courses/programming/pcap-programming-essentials-python
4. Attempt for this certification
https://freecodecamp.org/learn/scientific-computing-with-python/
5. Take it to next level
❯ Data Scrapping, NumPy, Pandas
https://scaler.com/topics/course/python-for-data-science/
❯ Data Analysis
https://openclassrooms.com/courses/2304731-learn-python-basics-for-data-analysis
❯ Data Visualization
https://kaggle.com/learn/data-visualization
❯ Django
https://openclassrooms.com/courses/6967196-create-a-web-application-with-django
❯ Machine Learning
https://developers.google.com/machine-learning/crash-course
❯ Deep Learning (TensorFlow)
https://kaggle.com/learn/intro-to-deep-learning
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
▪Data Science
▪ AI/ML
▪ Web Dev
1. Start with this
https://kaggle.com/learn/python
2. Take any one of these
❯ https://openclassrooms.com/courses/6900856-learn-programming-with-python
❯ https://scaler.com/topics/course/python-for-beginners/
❯ https://simplilearn.com/learn-python-basics-free-course-skillup
3. Then take this
https://netacad.com/courses/programming/pcap-programming-essentials-python
4. Attempt for this certification
https://freecodecamp.org/learn/scientific-computing-with-python/
5. Take it to next level
❯ Data Scrapping, NumPy, Pandas
https://scaler.com/topics/course/python-for-data-science/
❯ Data Analysis
https://openclassrooms.com/courses/2304731-learn-python-basics-for-data-analysis
❯ Data Visualization
https://kaggle.com/learn/data-visualization
❯ Django
https://openclassrooms.com/courses/6967196-create-a-web-application-with-django
❯ Machine Learning
https://developers.google.com/machine-learning/crash-course
❯ Deep Learning (TensorFlow)
https://kaggle.com/learn/intro-to-deep-learning
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
❤13👍10