π DeepOnto: A Python Package for Ontology Engineering with Deep Learning
A package for ontology engineering with deep learning and language model.
pip install deeponto
π₯ Github: https://github.com/KRR-Oxford/DeepOnto
π Project: https://krr-oxford.github.io/DeepOnto/
π Paper: https://arxiv.org/abs/2307.03067v1
π Dataset: https://paperswithcode.com/dataset/ontolama
https://t.iss.one/DataScienceT
A package for ontology engineering with deep learning and language model.
pip install deeponto
π₯ Github: https://github.com/KRR-Oxford/DeepOnto
π Project: https://krr-oxford.github.io/DeepOnto/
π Paper: https://arxiv.org/abs/2307.03067v1
π Dataset: https://paperswithcode.com/dataset/ontolama
https://t.iss.one/DataScienceT
β€3π2
Top 6 Algorithms Every Software Engineer Should Know
1) Binary Search Algorithm.
2) Bubble Sort Algorithm.
3) Merge Sort Algorithm
4) Depth-first Search Algorithm
5) Dijkstraβs Algorithm
6) Randomized Algorithm
https://t.iss.one/DataScienceT
1) Binary Search Algorithm.
2) Bubble Sort Algorithm.
3) Merge Sort Algorithm
4) Depth-first Search Algorithm
5) Dijkstraβs Algorithm
6) Randomized Algorithm
https://t.iss.one/DataScienceT
β€7π2
βοΈ InPars Toolkit: A Unified and Reproducible Synthetic Data Generation Pipeline for Neural Information Retrieval.
π₯ Github: https://github.com/zetaalphavector/inpars
π Paper: https://arxiv.org/abs/2307.04601v1
π Dataset: https://paperswithcode.com/dataset/beir
https://t.iss.one/DataScienceT
pip install inpars
π₯ Github: https://github.com/zetaalphavector/inpars
π Paper: https://arxiv.org/abs/2307.04601v1
π Dataset: https://paperswithcode.com/dataset/beir
https://t.iss.one/DataScienceT
π3β€2
π3π2
Django Roadmap
Link 1: https://github.com/HHHMHA/django-roadmap
Link 2:
https://github.com/faresemad/Django-Roadmap
Share this roadmap for your friends
https://t.iss.one/CodeProgrammer
Link 1: https://github.com/HHHMHA/django-roadmap
Link 2:
https://github.com/faresemad/Django-Roadmap
Share this roadmap for your friends
https://t.iss.one/CodeProgrammer
π3
Fourier-Net
π₯ Github: https://github.com/xi-jia/fourier-net
β© Paper: https://arxiv.org/pdf/2307.02997v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/learn2reg
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/xi-jia/fourier-net
β© Paper: https://arxiv.org/pdf/2307.02997v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/learn2reg
https://t.iss.one/DataScienceT
π2
π₯ Generative Pretraining in Multimodality
Model can take in any single-modality or multimodal data input indiscriminately through a one-model-for-all autoregressive training process.
π₯ Github: https://github.com/baaivision/emu
π Paper: https://arxiv.org/abs/2307.05222v1
π Dataset: https://paperswithcode.com/dataset/mmc4
https://t.iss.one/DataScienceT
Model can take in any single-modality or multimodal data input indiscriminately through a one-model-for-all autoregressive training process.
π₯ Github: https://github.com/baaivision/emu
π Paper: https://arxiv.org/abs/2307.05222v1
π Dataset: https://paperswithcode.com/dataset/mmc4
https://t.iss.one/DataScienceT
π2β€1
Deep Learning Course Notes.pdf
19.1 MB
π6β€2
This media is not supported in your browser
VIEW IN TELEGRAM
AnimateDiff
Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.
π₯ Github: https://github.com/guoyww/animatediff/
π₯ Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
π Paper: https://arxiv.org/abs/2307.04725
π Project: https://animatediff.github.io/
https://t.iss.one/DataScienceT
Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.
π₯ Github: https://github.com/guoyww/animatediff/
π₯ Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
π Paper: https://arxiv.org/abs/2307.04725
π Project: https://animatediff.github.io/
https://t.iss.one/DataScienceT
π2
machinelearningAIDeep_resume.pdf
45.4 MB
Cheat Sheets for AI Neural Networks, Machine Learning, DeepLearning & Big Data
π Please React β₯οΈ, Share
https://t.iss.one/DataScienceM
π Please React β₯οΈ, Share
https://t.iss.one/DataScienceM
β€18π3
π Urhythmic: Rhythm Modeling for Voice Conversion
Unsupervised Rhythm Modeling for Voice Conversion.
π₯ Github: https://github.com/bshall/urhythmic
π₯ Documentation: https://colab.research.google.com/github/bshall/urhythmic/blob/main/urhythmic_demo.ipynb
π Paper: https://arxiv.org/abs/2307.06040v1
π Dataset: https://paperswithcode.com/dataset/vctk
https://t.iss.one/DataScienceT
Unsupervised Rhythm Modeling for Voice Conversion.
π₯ Github: https://github.com/bshall/urhythmic
π₯ Documentation: https://colab.research.google.com/github/bshall/urhythmic/blob/main/urhythmic_demo.ipynb
π Paper: https://arxiv.org/abs/2307.06040v1
π Dataset: https://paperswithcode.com/dataset/vctk
https://t.iss.one/DataScienceT
π5