π₯ Chat Downloader
A simple tool used to retrieve chat messages from livestreams, videos, clips and past broadcasts.
- YouTube.com
- Zoom.us
- Facebook.com
- Twitch.tv
π₯ Github
π Docs
https://t.iss.one/DataScienceT
A simple tool used to retrieve chat messages from livestreams, videos, clips and past broadcasts.
- YouTube.com
- Zoom.us
- Facebook.com
- Twitch.tv
$ pip install chat-downloader
Using:
# termimal
$ chat_downloader https://www.youtube.com/watch?v=video_link --output chat.json
# Python script
from chat_downloader import ChatDownloader
url = 'https://www.youtube.com/watch?v=video_link'
chat = ChatDownloader().get_chat(url)
for message in chat:
chat.print_formatted(message)
π₯ Github
π Docs
https://t.iss.one/DataScienceT
β€5π2
π₯ Tkinter Designer
An easy and fast way to create a Python GUI π
π₯ Github
https://t.iss.one/DataScienceT
An easy and fast way to create a Python GUI π
π₯ Github
https://t.iss.one/DataScienceT
π6β€2
Benchmarking Test-Time Adaptation against Distribution Shifts in Image Classification
π₯ Github: https://github.com/yuyongcan/benchmark-tta
β© Paper: https://arxiv.org/pdf/2307.03133v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/yuyongcan/benchmark-tta
β© Paper: https://arxiv.org/pdf/2307.03133v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
β€2π2
π DeepOnto: A Python Package for Ontology Engineering with Deep Learning
A package for ontology engineering with deep learning and language model.
pip install deeponto
π₯ Github: https://github.com/KRR-Oxford/DeepOnto
π Project: https://krr-oxford.github.io/DeepOnto/
π Paper: https://arxiv.org/abs/2307.03067v1
π Dataset: https://paperswithcode.com/dataset/ontolama
https://t.iss.one/DataScienceT
A package for ontology engineering with deep learning and language model.
pip install deeponto
π₯ Github: https://github.com/KRR-Oxford/DeepOnto
π Project: https://krr-oxford.github.io/DeepOnto/
π Paper: https://arxiv.org/abs/2307.03067v1
π Dataset: https://paperswithcode.com/dataset/ontolama
https://t.iss.one/DataScienceT
β€3π2
Top 6 Algorithms Every Software Engineer Should Know
1) Binary Search Algorithm.
2) Bubble Sort Algorithm.
3) Merge Sort Algorithm
4) Depth-first Search Algorithm
5) Dijkstraβs Algorithm
6) Randomized Algorithm
https://t.iss.one/DataScienceT
1) Binary Search Algorithm.
2) Bubble Sort Algorithm.
3) Merge Sort Algorithm
4) Depth-first Search Algorithm
5) Dijkstraβs Algorithm
6) Randomized Algorithm
https://t.iss.one/DataScienceT
β€7π2
βοΈ InPars Toolkit: A Unified and Reproducible Synthetic Data Generation Pipeline for Neural Information Retrieval.
π₯ Github: https://github.com/zetaalphavector/inpars
π Paper: https://arxiv.org/abs/2307.04601v1
π Dataset: https://paperswithcode.com/dataset/beir
https://t.iss.one/DataScienceT
pip install inpars
π₯ Github: https://github.com/zetaalphavector/inpars
π Paper: https://arxiv.org/abs/2307.04601v1
π Dataset: https://paperswithcode.com/dataset/beir
https://t.iss.one/DataScienceT
π3β€2
π3π2
Django Roadmap
Link 1: https://github.com/HHHMHA/django-roadmap
Link 2:
https://github.com/faresemad/Django-Roadmap
Share this roadmap for your friends
https://t.iss.one/CodeProgrammer
Link 1: https://github.com/HHHMHA/django-roadmap
Link 2:
https://github.com/faresemad/Django-Roadmap
Share this roadmap for your friends
https://t.iss.one/CodeProgrammer
π3
Fourier-Net
π₯ Github: https://github.com/xi-jia/fourier-net
β© Paper: https://arxiv.org/pdf/2307.02997v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/learn2reg
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/xi-jia/fourier-net
β© Paper: https://arxiv.org/pdf/2307.02997v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/learn2reg
https://t.iss.one/DataScienceT
π2
π₯ Generative Pretraining in Multimodality
Model can take in any single-modality or multimodal data input indiscriminately through a one-model-for-all autoregressive training process.
π₯ Github: https://github.com/baaivision/emu
π Paper: https://arxiv.org/abs/2307.05222v1
π Dataset: https://paperswithcode.com/dataset/mmc4
https://t.iss.one/DataScienceT
Model can take in any single-modality or multimodal data input indiscriminately through a one-model-for-all autoregressive training process.
π₯ Github: https://github.com/baaivision/emu
π Paper: https://arxiv.org/abs/2307.05222v1
π Dataset: https://paperswithcode.com/dataset/mmc4
https://t.iss.one/DataScienceT
π2β€1
Deep Learning Course Notes.pdf
19.1 MB
π6β€2