Data Science | Machine Learning with Python for Researchers
31.3K subscribers
1.47K photos
102 videos
22 files
1.75K links
Admin: @HusseinSheikho

The Data Science and Python channel is for researchers and advanced programmers

Buy ads: https://telega.io/c/dataScienceT
Download Telegram
⚑ LightGlue. Local Feature Matching at Light Speed

LightGlue a lightweight feature matcher with high accuracy and adaptive pruning techniques, both in the width and depth of the network, for blazing fast inference.

git clone https://github.com/cvg/LightGlue.git && cd LightGlue
python -m pip install -e .


πŸ–₯ Github: https://github.com/cvg/lightglue

πŸ“• Paper: https://arxiv.org/abs/2306.13643v1

πŸ”—Dataset: https://paperswithcode.com/dataset/hpatches

https://t.iss.one/DataScienceT
❀2πŸ‘2
πŸšΆβ€β™‚οΈ MotionGPT: Human Motion
as Foreign Language

MotionGPT consists of a motion tokenizer responsible for converting raw motion data into discrete motion tokens, as well as a motion-aware language model that learns to understand the motion tokens from large language pre-training models by corresponding textual descriptions.

⏩ Project: https://motion-gpt.github.io/

πŸ–₯ Github: https://github.com/openmotionlab/motiongpt

πŸ“• Paper: https://arxiv.org/pdf/2306.14795.pdf

πŸ”—Dataset: https://paperswithcode.com/dataset/amass

https://t.iss.one/DataScienceT
❀‍πŸ”₯2❀2πŸ‘1
PANet: LiDAR Panoptic Segmentation with Sparse Instance Proposal and Aggregation

πŸ–₯ Github: https://github.com/jieqianyu/panet

⏩ Paper: https://arxiv.org/pdf/2306.15348v1.pdf

πŸ’¨ Dataset: https://paperswithcode.com/dataset/kitti

https://t.iss.one/DataScienceT
πŸ‘3❀‍πŸ”₯1❀1
πŸ’¬ 3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement

A large-scale speech corpus to facilitate the research of speech representation

πŸ–₯ Github: https://github.com/alibaba-damo-academy/3D-Speaker

πŸ“• Paper: https://arxiv.org/abs/2306.15354v1

πŸ”—Dataset: https://3dspeaker.github.io/

https://t.iss.one/DataScienceT
❀1❀‍πŸ”₯1πŸ‘1
This media is not supported in your browser
VIEW IN TELEGRAM
The source code for DragGAN has been released! πŸ”₯πŸ”₯πŸ”₯

We can finally play with that marvel!

πŸ”— GitHub repository: https://github.com/XingangPan/DragGAN

https://t.iss.one/DataScienceT
❀‍πŸ”₯4πŸ‘1
πŸ“• Constrained-Text-Generation-Studio

AI writing assistant for recreational linguists, poets, creative writers, and/or researchers to use and study the ability of large-scale language models.

πŸ–₯ Github: https://github.com/hellisotherpeople/constrained-text-generation-studio

πŸ“• Paper: https://arxiv.org/abs/2306.15926v1

πŸ”—Dataset: https://huggingface.co/datasets/Hellisotherpeople/Lipogram-e

https://t.iss.one/DataScienceT
πŸ‘3
CellViT: Vision Transformers for Precise Cell Segmentation and Classification

πŸ–₯ Github: https://github.com/tio-ikim/cellvit

⏩ Paper: https://arxiv.org/pdf/2306.15350v1.pdf

πŸ’¨ Dataset: https://paperswithcode.com/dataset/pannuke

https://t.iss.one/DataScienceT
❀‍πŸ”₯4πŸ‘3
πŸ’¬ GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.

⭐️ Project: https://gligen.github.io/

⭐️ Demo: https://aka.ms/gligen

βœ…οΈ Paper: https://arxiv.org/abs/2301.07093

πŸ–₯ Github: https://github.com/gligen/GLIGEN

https://t.iss.one/DataScienceT
πŸ‘2❀‍πŸ”₯1πŸ†1
πŸ§β€β™‚ BEDLAM: Bodies Exhibiting Detailed Lifelike Animated Motion

BEDLAM is useful for a variety of tasks and all images, ground truth bodies, 3D clothing, support code, and more are available for research purposes.

πŸ–₯ Github: https://github.com/pixelite1201/BEDLAM

πŸ“• Paper: https://bedlam.is.tuebingen.mpg.de/media/upload/BEDLAM_CVPR2023.pdf

πŸ”—Render code: https://github.com/PerceivingSystems/bedlam_render

🎞 Video: https://youtu.be/OBttHFwdtfI

πŸ‘‘ Dataset: https://paperswithcode.com/dataset/bedlam

https://t.iss.one/DataScienceT
❀1❀‍πŸ”₯1πŸ‘1
Python Machine Learning Projects (2023)

Download Book βœ“:
https://t.iss.one/DataScienceM/240
❀‍πŸ”₯5πŸ‘1
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ ManimML: Communicating Machine Learning Architectures with Animation

An open-source Python library for easily generating animations of ML algorithms directly from code.

from manim_ml.neural_network import NeuralNetwork, Convolutional2DLayer, FeedForwardLayer
# Make nn
nn = NeuralNetwork([
Convolutional2DLayer(1, 7, filter_spacing=0.32),
Convolutional2DLayer(3, 5, 3, filter_spacing=0.32, activation_function="ReLU"),
FeedForwardLayer(3, activation_function="Sigmoid"),
],
layer_spacing=0.25,
)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.play(forward_pass)


πŸ–₯ Github: https://github.com/helblazer811/manimml

πŸ“• Paper: https://arxiv.org/abs/2306.17108v1

πŸ“Œ Project: https://www.manim.community/

https://t.iss.one/DataScienceT
❀‍πŸ”₯3πŸ‘1
πŸ–₯ 10 Advanced Python Scripts For Everyday Programming

1. SpeedTest with Python
# pip install pyspeedtest
# pip install speedtest
# pip install speedtest-cli

#method 1
import speedtest

speedTest = speedtest.Speedtest()
print(speedTest.get_best_server())

#Check download speed
print(speedTest.download())

#Check upload speed
print(speedTest.upload())

# Method 2

import pyspeedtest
st = pyspeedtest.SpeedTest()
st.ping()
st.download()
st.upload()

2. Search on Google

# pip install google

from googlesearch import search

query = "Medium.com"

for url in search(query):
print(url)


3. Make Web Bot
# pip install selenium

import time
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

bot = webdriver.Chrome("chromedriver.exe")
bot.get('[https://www.google.com'](https://www.google.com'))

search = bot.find_element_by_name('q')
search.send_keys("@codedev101")
search.send_keys(Keys.RETURN)
time.sleep(5)
bot.quit()


4. Fetch Song Lyrics
# pip install lyricsgenius

import lyricsgenius

api_key = "xxxxxxxxxxxxxxxxxxxxx"

genius = lyricsgenius.Genius(api_key)
artist = genius.search_artist("Pop Smoke", max_songs=5,sort="title")
song = artist.song("100k On a Coupe")

print(song.lyrics)


5. Get Exif Data of Photos
# Get Exif of Photo

# Method 1
# pip install pillow
import PIL.Image
import PIL.ExifTags

img = PIL.Image.open("Img.jpg")
exif_data =
{
PIL.ExifTags.TAGS[i]: j
for i, j in img._getexif().items()
if i in PIL.ExifTags.TAGS
}
print(exif_data)


# Method 2
# pip install ExifRead
import exifread

filename = open(path_name, 'rb')

tags = exifread.process_file(filename)
print(tags)


6. OCR Text from Image
# pip install pytesseract

import pytesseract
from PIL import Image

pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

t=Image.open("img.png")
text = pytesseract.image_to_string(t, config='')

print(text)


7. Convert Photo into Cartonize

# pip install opencv-python

import cv2

img = cv2.imread('img.jpg')
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grayimg = cv2.medianBlur(grayimg, 5)

edges = cv2.Laplacian(grayimg , cv2.CV_8U, ksize=5)
r,mask =cv2.threshold(edges,100,255,cv2.THRESH_BINARY_INV)

img2 = cv2.bitwise_and(img, img, mask=mask)
img2 = cv2.medianBlur(img2, 5)

cv2.imwrite("cartooned.jpg", mask)


8. Empty Recycle Bin
# pip install winshell

import winshell
try:
winshell.recycle_bin().empty(confirm=False, /show_progress=False, sound=True)
print("Recycle bin is emptied Now")
except:
print("Recycle bin already empty")


9. Python Image Enhancement
# pip install pillow

from PIL import Image,ImageFilter
from PIL import ImageEnhance

im = Image.open('img.jpg')

# Choose your filter
# add Hastag at start if you don't want to any filter below

en = ImageEnhance.Color(im)
en = ImageEnhance.Contrast(im)
en = ImageEnhance.Brightness(im)
en = ImageEnhance.Sharpness(im)

# result
en.enhance(1.5).show("enhanced")


10. Get Window Version
# Window Version

import wmi
data = wmi.WMI()
for os_name in data.Win32_OperatingSystem():
print(os_name.Caption) # Microsoft Windows 11 Home


https://t.iss.one/DataScienceT
❀13πŸ‘7
πŸ“Ά Extract Saved WiFi Passwords in Python

import subprocess
import os
import re
from collections import namedtuple
import configparser

def get_linux_saved_wifi_passwords(verbose=1):


network_connections_path = "/etc/NetworkManager/system-connections/"
fields = ["ssid", "auth-alg", "key-mgmt", "psk"]
Profile = namedtuple("Profile", [f.replace("-", "_") for f in fields])
profiles = []
for file in os.listdir(network_connections_path):
data = { k.replace("-", "_"): None for k in fields }
config = configparser.ConfigParser()
config.read(os.path.join(network_connections_path, file))
for _, section in config.items():
for k, v in section.items():
if k in fields:
data[k.replace("-", "_")] = v
profile = Profile(**data)
if verbose >= 1:
print_linux_profile(profile)
profiles.append(profile)
return profiles


def print_linux_profiles(verbose):
"""Prints all extracted SSIDs along with Key (PSK) on Linux"""
print("SSID AUTH KEY-MGMT PSK")
print("-"*50)
get_linux_saved_wifi_passwords(verbose)


https://t.iss.one/DataScienceT
❀5πŸ‘3