π₯ Awesome-Multimodal-Large-Language-Models
Latest Papers and Datasets on Multimodal Large Language Models, and Their Evaluation.
π₯ Github: https://github.com/bradyfu/awesome-multimodal-large-language-models
π Paper: https://arxiv.org/abs/2306.13394v1
πDataset: https://paperswithcode.com/dataset/coco
https://t.iss.one/DataScienceT
Latest Papers and Datasets on Multimodal Large Language Models, and Their Evaluation.
π₯ Github: https://github.com/bradyfu/awesome-multimodal-large-language-models
π Paper: https://arxiv.org/abs/2306.13394v1
πDataset: https://paperswithcode.com/dataset/coco
https://t.iss.one/DataScienceT
β€βπ₯3β€1
This media is not supported in your browser
VIEW IN TELEGRAM
π Machine Learning Cheat Sheets
https://sites.google.com/view/datascience-cheat-sheets
Machine Learning Animations: https://sites.google.com/view/mlingifs#h.341bzfgiuxfx
https://t.iss.one/DataScienceT
https://sites.google.com/view/datascience-cheat-sheets
Machine Learning Animations: https://sites.google.com/view/mlingifs#h.341bzfgiuxfx
https://t.iss.one/DataScienceT
π2β€βπ₯1β€1
β‘ LightGlue. Local Feature Matching at Light Speed
LightGlue a lightweight feature matcher with high accuracy and adaptive pruning techniques, both in the width and depth of the network, for blazing fast inference.
π₯ Github: https://github.com/cvg/lightglue
π Paper: https://arxiv.org/abs/2306.13643v1
πDataset: https://paperswithcode.com/dataset/hpatches
https://t.iss.one/DataScienceT
LightGlue a lightweight feature matcher with high accuracy and adaptive pruning techniques, both in the width and depth of the network, for blazing fast inference.
git clone https://github.com/cvg/LightGlue.git && cd LightGlue
python -m pip install -e .
π₯ Github: https://github.com/cvg/lightglue
π Paper: https://arxiv.org/abs/2306.13643v1
πDataset: https://paperswithcode.com/dataset/hpatches
https://t.iss.one/DataScienceT
β€2π2
This channel is for Programmers, Coders, Software Engineers.
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
https://t.iss.one/DataScienceM
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
https://t.iss.one/DataScienceM
Telegram
Data Science Machine Learning Data Analysis
This channel is for Programmers, Coders, Software Engineers.
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Cross promotion and ads: @hussein_sheikho
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Cross promotion and ads: @hussein_sheikho
πΆββοΈ MotionGPT: Human Motion
as Foreign Language
MotionGPT consists of a motion tokenizer responsible for converting raw motion data into discrete motion tokens, as well as a motion-aware language model that learns to understand the motion tokens from large language pre-training models by corresponding textual descriptions.
β© Project: https://motion-gpt.github.io/
π₯ Github: https://github.com/openmotionlab/motiongpt
π Paper: https://arxiv.org/pdf/2306.14795.pdf
πDataset: https://paperswithcode.com/dataset/amass
https://t.iss.one/DataScienceT
as Foreign Language
MotionGPT consists of a motion tokenizer responsible for converting raw motion data into discrete motion tokens, as well as a motion-aware language model that learns to understand the motion tokens from large language pre-training models by corresponding textual descriptions.
β© Project: https://motion-gpt.github.io/
π₯ Github: https://github.com/openmotionlab/motiongpt
π Paper: https://arxiv.org/pdf/2306.14795.pdf
πDataset: https://paperswithcode.com/dataset/amass
https://t.iss.one/DataScienceT
β€βπ₯2β€2π1
π₯ Free Courses on Large Language Models
βͺChatGPT Prompt Engineering for Developers
βͺLangChain for LLM Application Development
βͺBuilding Systems with the ChatGPT API
βͺGoogle Cloud Generative AI Learning Path
βͺIntroduction to Large Language Models with Google Cloud
βͺLLM University
βͺFull Stack LLM Bootcamp
https://t.iss.one/DataScienceT
βͺChatGPT Prompt Engineering for Developers
βͺLangChain for LLM Application Development
βͺBuilding Systems with the ChatGPT API
βͺGoogle Cloud Generative AI Learning Path
βͺIntroduction to Large Language Models with Google Cloud
βͺLLM University
βͺFull Stack LLM Bootcamp
https://t.iss.one/DataScienceT
β€βπ₯5β€3π1
PANet: LiDAR Panoptic Segmentation with Sparse Instance Proposal and Aggregation
π₯ Github: https://github.com/jieqianyu/panet
β© Paper: https://arxiv.org/pdf/2306.15348v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/kitti
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/jieqianyu/panet
β© Paper: https://arxiv.org/pdf/2306.15348v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/kitti
https://t.iss.one/DataScienceT
π3β€βπ₯1β€1
π¬ 3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement
A large-scale speech corpus to facilitate the research of speech representation
π₯ Github: https://github.com/alibaba-damo-academy/3D-Speaker
π Paper: https://arxiv.org/abs/2306.15354v1
πDataset: https://3dspeaker.github.io/
https://t.iss.one/DataScienceT
A large-scale speech corpus to facilitate the research of speech representation
π₯ Github: https://github.com/alibaba-damo-academy/3D-Speaker
π Paper: https://arxiv.org/abs/2306.15354v1
πDataset: https://3dspeaker.github.io/
https://t.iss.one/DataScienceT
β€1β€βπ₯1π1
This media is not supported in your browser
VIEW IN TELEGRAM
What the Brain Sees
How a text-to-image model generates images from brain scans
https://www.deeplearning.ai/the-batch/how-a-text-to-image-model-generates-images-from-brain-scans/
https://t.iss.one/DataScienceT
How a text-to-image model generates images from brain scans
https://www.deeplearning.ai/the-batch/how-a-text-to-image-model-generates-images-from-brain-scans/
https://t.iss.one/DataScienceT
β€1β€βπ₯1π1
This media is not supported in your browser
VIEW IN TELEGRAM
The source code for DragGAN has been released! π₯π₯π₯
We can finally play with that marvel!
π GitHub repository: https://github.com/XingangPan/DragGAN
https://t.iss.one/DataScienceT
We can finally play with that marvel!
π GitHub repository: https://github.com/XingangPan/DragGAN
https://t.iss.one/DataScienceT
β€βπ₯4π1
π Constrained-Text-Generation-Studio
AI writing assistant for recreational linguists, poets, creative writers, and/or researchers to use and study the ability of large-scale language models.
π₯ Github: https://github.com/hellisotherpeople/constrained-text-generation-studio
π Paper: https://arxiv.org/abs/2306.15926v1
πDataset: https://huggingface.co/datasets/Hellisotherpeople/Lipogram-e
https://t.iss.one/DataScienceT
AI writing assistant for recreational linguists, poets, creative writers, and/or researchers to use and study the ability of large-scale language models.
π₯ Github: https://github.com/hellisotherpeople/constrained-text-generation-studio
π Paper: https://arxiv.org/abs/2306.15926v1
πDataset: https://huggingface.co/datasets/Hellisotherpeople/Lipogram-e
https://t.iss.one/DataScienceT
π3
CellViT: Vision Transformers for Precise Cell Segmentation and Classification
π₯ Github: https://github.com/tio-ikim/cellvit
β© Paper: https://arxiv.org/pdf/2306.15350v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/pannuke
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/tio-ikim/cellvit
β© Paper: https://arxiv.org/pdf/2306.15350v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/pannuke
https://t.iss.one/DataScienceT
β€βπ₯4π3
A special and important channel to download the most important books to learn programming and data science
t.iss.one/DataScienceM
t.iss.one/DataScienceM
Telegram
Data Science Machine Learning Data Analysis
This channel is for Programmers, Coders, Software Engineers.
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Cross promotion and ads: @hussein_sheikho
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Cross promotion and ads: @hussein_sheikho
π2β€βπ₯1
π¬ GLIGEN: Open-Set Grounded Text-to-Image Generation
GLIGENβs zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.
βοΈ Project: https://gligen.github.io/
βοΈ Demo: https://aka.ms/gligen
β οΈ Paper: https://arxiv.org/abs/2301.07093
π₯ Github: https://github.com/gligen/GLIGEN
https://t.iss.one/DataScienceT
GLIGENβs zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.
βοΈ Project: https://gligen.github.io/
βοΈ Demo: https://aka.ms/gligen
β οΈ Paper: https://arxiv.org/abs/2301.07093
π₯ Github: https://github.com/gligen/GLIGEN
https://t.iss.one/DataScienceT
π2β€βπ₯1π1
π₯ RL4CO
π₯ Github: https://github.com/kaist-silab/rl4co
π Paper: https://arxiv.org/abs/2306.17100v1
π₯ Colab: https://colab.research.google.com/github/kaist-silab/rl4co/blob/main/notebooks/1-quickstart.ipynb
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/kaist-silab/rl4co
π Paper: https://arxiv.org/abs/2306.17100v1
π₯ Colab: https://colab.research.google.com/github/kaist-silab/rl4co/blob/main/notebooks/1-quickstart.ipynb
https://t.iss.one/DataScienceT
β€βπ₯1β€1π1
π§ββ BEDLAM: Bodies Exhibiting Detailed Lifelike Animated Motion
BEDLAM is useful for a variety of tasks and all images, ground truth bodies, 3D clothing, support code, and more are available for research purposes.
π₯ Github: https://github.com/pixelite1201/BEDLAM
π Paper: https://bedlam.is.tuebingen.mpg.de/media/upload/BEDLAM_CVPR2023.pdf
πRender code: https://github.com/PerceivingSystems/bedlam_render
π Video: https://youtu.be/OBttHFwdtfI
π Dataset: https://paperswithcode.com/dataset/bedlam
https://t.iss.one/DataScienceT
BEDLAM is useful for a variety of tasks and all images, ground truth bodies, 3D clothing, support code, and more are available for research purposes.
π₯ Github: https://github.com/pixelite1201/BEDLAM
π Paper: https://bedlam.is.tuebingen.mpg.de/media/upload/BEDLAM_CVPR2023.pdf
πRender code: https://github.com/PerceivingSystems/bedlam_render
π Video: https://youtu.be/OBttHFwdtfI
π Dataset: https://paperswithcode.com/dataset/bedlam
https://t.iss.one/DataScienceT
β€1β€βπ₯1π1
This media is not supported in your browser
VIEW IN TELEGRAM
βοΈ ManimML: Communicating Machine Learning Architectures with Animation
An open-source Python library for easily generating animations of ML algorithms directly from code.
π₯ Github: https://github.com/helblazer811/manimml
π Paper: https://arxiv.org/abs/2306.17108v1
π Project: https://www.manim.community/
https://t.iss.one/DataScienceT
An open-source Python library for easily generating animations of ML algorithms directly from code.
from manim_ml.neural_network import NeuralNetwork, Convolutional2DLayer, FeedForwardLayer
# Make nn
nn = NeuralNetwork([
Convolutional2DLayer(1, 7, filter_spacing=0.32),
Convolutional2DLayer(3, 5, 3, filter_spacing=0.32, activation_function="ReLU"),
FeedForwardLayer(3, activation_function="Sigmoid"),
],
layer_spacing=0.25,
)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.play(forward_pass)
π₯ Github: https://github.com/helblazer811/manimml
π Paper: https://arxiv.org/abs/2306.17108v1
π Project: https://www.manim.community/
https://t.iss.one/DataScienceT
β€βπ₯3π1
π§¬NeuralFuse
π₯ Github: https://github.com/ibm/neuralfuse
β© Paper: https://arxiv.org/pdf/2306.16869v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/ibm/neuralfuse
β© Paper: https://arxiv.org/pdf/2306.16869v1.pdf
π¨ Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
π2
π₯ 10 Advanced Python Scripts For Everyday Programming
1. SpeedTest with Python
2. Search on Google
3. Make Web Bot
4. Fetch Song Lyrics
5. Get Exif Data of Photos
6. OCR Text from Image
7. Convert Photo into Cartonize
8. Empty Recycle Bin
9. Python Image Enhancement
10. Get Window Version
https://t.iss.one/DataScienceT
1. SpeedTest with Python
# pip install pyspeedtest
# pip install speedtest
# pip install speedtest-cli
#method 1
import speedtest
speedTest = speedtest.Speedtest()
print(speedTest.get_best_server())
#Check download speed
print(speedTest.download())
#Check upload speed
print(speedTest.upload())
# Method 2
import pyspeedtest
st = pyspeedtest.SpeedTest()
st.ping()
st.download()
st.upload()
2. Search on Google
# pip install google
from googlesearch import search
query = "Medium.com"
for url in search(query):
print(url)
3. Make Web Bot
# pip install selenium
import time
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
bot = webdriver.Chrome("chromedriver.exe")
bot.get('[https://www.google.com'](https://www.google.com'))
search = bot.find_element_by_name('q')
search.send_keys("@codedev101")
search.send_keys(Keys.RETURN)
time.sleep(5)
bot.quit()
4. Fetch Song Lyrics
# pip install lyricsgenius
import lyricsgenius
api_key = "xxxxxxxxxxxxxxxxxxxxx"
genius = lyricsgenius.Genius(api_key)
artist = genius.search_artist("Pop Smoke", max_songs=5,sort="title")
song = artist.song("100k On a Coupe")
print(song.lyrics)
5. Get Exif Data of Photos
# Get Exif of Photo
# Method 1
# pip install pillow
import PIL.Image
import PIL.ExifTags
img = PIL.Image.open("Img.jpg")
exif_data =
{
PIL.ExifTags.TAGS[i]: j
for i, j in img._getexif().items()
if i in PIL.ExifTags.TAGS
}
print(exif_data)
# Method 2
# pip install ExifRead
import exifread
filename = open(path_name, 'rb')
tags = exifread.process_file(filename)
print(tags)
6. OCR Text from Image
# pip install pytesseract
import pytesseract
from PIL import Image
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
t=Image.open("img.png")
text = pytesseract.image_to_string(t, config='')
print(text)
7. Convert Photo into Cartonize
# pip install opencv-python
import cv2
img = cv2.imread('img.jpg')
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grayimg = cv2.medianBlur(grayimg, 5)
edges = cv2.Laplacian(grayimg , cv2.CV_8U, ksize=5)
r,mask =cv2.threshold(edges,100,255,cv2.THRESH_BINARY_INV)
img2 = cv2.bitwise_and(img, img, mask=mask)
img2 = cv2.medianBlur(img2, 5)
cv2.imwrite("cartooned.jpg", mask)
8. Empty Recycle Bin
# pip install winshell
import winshell
try:
winshell.recycle_bin().empty(confirm=False, /show_progress=False, sound=True)
print("Recycle bin is emptied Now")
except:
print("Recycle bin already empty")
9. Python Image Enhancement
# pip install pillow
from PIL import Image,ImageFilter
from PIL import ImageEnhance
im = Image.open('img.jpg')
# Choose your filter
# add Hastag at start if you don't want to any filter below
en = ImageEnhance.Color(im)
en = ImageEnhance.Contrast(im)
en = ImageEnhance.Brightness(im)
en = ImageEnhance.Sharpness(im)
# result
en.enhance(1.5).show("enhanced")
10. Get Window Version
# Window Version
import wmi
data = wmi.WMI()
for os_name in data.Win32_OperatingSystem():
print(os_name.Caption) # Microsoft Windows 11 Home
https://t.iss.one/DataScienceT
β€13π7