Data Science | Machine Learning with Python for Researchers
31.7K subscribers
1.84K photos
102 videos
22 files
2.12K links
Admin: @HusseinSheikho

The Data Science and Python channel is for researchers and advanced programmers

Buy ads: https://telega.io/c/dataScienceT
Download Telegram
🔹 Title: Context Engineering for Trustworthiness: Rescorla Wagner Steering Under Mixed and Inappropriate Contexts

🔹 Publication Date: Published on Sep 2

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.04500
• PDF: https://arxiv.org/pdf/2509.04500

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
1
🔹 Title: EthicsMH: A Pilot Benchmark for Ethical Reasoning in Mental Health AI

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11648
• PDF: https://arxiv.org/pdf/2509.11648

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11543
• PDF: https://arxiv.org/pdf/2509.11543
• Github: https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: LazyDrag: Enabling Stable Drag-Based Editing on Multi-Modal Diffusion Transformers via Explicit Correspondence

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.12203
• PDF: https://arxiv.org/pdf/2509.12203
• Project Page: https://zxyin.github.io/LazyDrag

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
1
🔹 Title: OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.12201
• PDF: https://arxiv.org/pdf/2509.12201
• Project Page: https://yangzhou24.github.io/OmniWorld/
• Github: https://github.com/yangzhou24/OmniWorld

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: Learning to Optimize Multi-Objective Alignment Through Dynamic Reward Weighting

🔹 Publication Date: Published on Sep 14

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11452
• PDF: https://arxiv.org/pdf/2509.11452
• Project Page: https://yining610.github.io/dynamic-reward-weighting-webpage/
• Github: https://github.com/yining610/dynamic-reward-weighting

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: CognitiveSky: Scalable Sentiment and Narrative Analysis for Decentralized Social Media

🔹 Publication Date: Published on Sep 14

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11444
• PDF: https://arxiv.org/pdf/2509.11444
• Project Page: https://cognitivesky.gaurabchhetri.com.np/
• Github: https://github.com/gauravfs-14/CognitiveSky

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: PersonaX: Multimodal Datasets with LLM-Inferred Behavior Traits

🔹 Publication Date: Published on Sep 14

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11362
• PDF: https://arxiv.org/pdf/2509.11362

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: InternScenes: A Large-scale Simulatable Indoor Scene Dataset with Realistic Layouts

🔹 Publication Date: Published on Sep 13

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.10813
• PDF: https://arxiv.org/pdf/2509.10813
• Project Page: https://marjordcpz.github.io/InternScenes.github.io/
• Github: https://github.com/InternRobotics/InternScenes

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: Measuring Epistemic Humility in Multimodal Large Language Models

🔹 Publication Date: Published on Sep 11

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.09658
• PDF: https://arxiv.org/pdf/2509.09658
• Github: https://github.com/maifoundations/HumbleBench

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: GAPrune: Gradient-Alignment Pruning for Domain-Aware Embeddings

🔹 Publication Date: Published on Sep 13

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.10844
• PDF: https://arxiv.org/pdf/2509.10844
• Project Page: https://github.com/yixuantt/GAPrune
• Github: https://github.com/yixuantt/GAPrune

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: Nav-R1: Reasoning and Navigation in Embodied Scenes

🔹 Publication Date: Published on Sep 13

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.10884
• PDF: https://arxiv.org/pdf/2509.10884
• Project Page: https://aigeeksgroup.github.io/Nav-R1/
• Github: https://github.com/AIGeeksGroup/Nav-R1

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
1
🔹 Title: Locality in Image Diffusion Models Emerges from Data Statistics

🔹 Publication Date: Published on Sep 11

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.09672
• PDF: https://arxiv.org/pdf/2509.09672
• Project Page: https://locality.lukoianov.com/
• Github: https://github.com/ottogin/locality-in-diffusion-models

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: Lost in Embeddings: Information Loss in Vision-Language Models

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11986
• PDF: https://arxiv.org/pdf/2509.11986

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
1
🔹 Title: Look Again, Think Slowly: Enhancing Visual Reflection in Vision-Language Models

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.12132
• PDF: https://arxiv.org/pdf/2509.12132

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
2
🔹 Title: SearchInstruct: Enhancing Domain Adaptation via Retrieval-Based Instruction Dataset Creation

🔹 Publication Date: Published on Sep 12

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.10708
• PDF: https://arxiv.org/pdf/2509.10708
• Github: https://github.com/mostafaamiri/SearchInstruct

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: Dr.V: A Hierarchical Perception-Temporal-Cognition Framework to Diagnose Video Hallucination by Fine-grained Spatial-Temporal Grounding

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11866
• PDF: https://arxiv.org/pdf/2509.11866

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
1
🔹 Title: LongEmotion: Measuring Emotional Intelligence of Large Language Models in Long-Context Interaction

🔹 Publication Date: Published on Sep 9

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.07403
• PDF: https://arxiv.org/pdf/2509.07403

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: ClaimIQ at CheckThat! 2025: Comparing Prompted and Fine-Tuned Language Models for Verifying Numerical Claims

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11492
• PDF: https://arxiv.org/pdf/2509.11492

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: FuseCodec: Semantic-Contextual Fusion and Supervision for Neural Codecs

🔹 Publication Date: Published on Sep 14

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11425
• PDF: https://arxiv.org/pdf/2509.11425

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT
🔹 Title: ToolRM: Outcome Reward Models for Tool-Calling Large Language Models

🔹 Publication Date: Published on Sep 15

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2509.11963
• PDF: https://arxiv.org/pdf/2509.11963

🔹 Datasets citing this paper:
No datasets found

🔹 Spaces citing this paper:
No spaces found
==================================

For more data science resources:
https://t.iss.one/DataScienceT