๐น Title: Morae: Proactively Pausing UI Agents for User Choices
๐น Publication Date: Published on Aug 29
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21456
โข PDF: https://arxiv.org/pdf/2508.21456
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 29
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21456
โข PDF: https://arxiv.org/pdf/2508.21456
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: AHELM: A Holistic Evaluation of Audio-Language Models
๐น Publication Date: Published on Aug 29
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21376
โข PDF: https://arxiv.org/pdf/2508.21376
โข Project Page: https://crfm.stanford.edu/helm/audio/v1.0.0/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 29
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21376
โข PDF: https://arxiv.org/pdf/2508.21376
โข Project Page: https://crfm.stanford.edu/helm/audio/v1.0.0/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: Think in Games: Learning to Reason in Games via Reinforcement Learning with Large Language Models
๐น Publication Date: Published on Aug 29
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21365
โข PDF: https://arxiv.org/pdf/2508.21365
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 29
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21365
โข PDF: https://arxiv.org/pdf/2508.21365
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: HERMES: Human-to-Robot Embodied Learning from Multi-Source Motion Data for Mobile Dexterous Manipulation
๐น Publication Date: Published on Aug 27
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.20085
โข PDF: https://arxiv.org/pdf/2508.20085
โข Project Page: https://gemcollector.github.io/HERMES/
โข Github: https://gemcollector.github.io/HERMES/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 27
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.20085
โข PDF: https://arxiv.org/pdf/2508.20085
โข Project Page: https://gemcollector.github.io/HERMES/
โข Github: https://gemcollector.github.io/HERMES/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
โค1
๐น Title: HPSv3: Towards Wide-Spectrum Human Preference Score
๐น Publication Date: Published on Aug 5
๐น Abstract: HPSv3, a human preference score using a wide-spectrum dataset and uncertainty-aware ranking loss, enhances text-to-image generation quality through iterative refinement. AI-generated summary Evaluating text-to-image generation models requires alignment with human perception, yet existing human-centric metrics are constrained by limited data coverage, suboptimal feature extraction, and inefficient loss functions. To address these challenges, we introduce Human Preference Score v3 (HPSv3). (1) We release HPDv3 , the first wide-spectrum human preference dataset integrating 1.08M text-image pairs and 1.17M annotated pairwise comparisons from state-of-the-art generative models and low to high-quality real-world images. (2) We introduce a VLM-based preference model trained using an uncertainty-aware ranking loss for fine-grained ranking. Besides, we propose Chain-of-Human-Preference ( CoHP ), an iterative image refinement method that enhances quality without extra data, using HPSv3 to select the best image at each step. Extensive experiments demonstrate that HPSv3 serves as a robust metric for wide-spectrum image evaluation, and CoHP offers an efficient and human-aligned approach to improve image generation quality . The code and dataset are available at the HPSv3 Homepage.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.03789
โข PDF: https://arxiv.org/pdf/2508.03789
โข Project Page: https://mizzenai.github.io/HPSv3.project/
โข Github: https://github.com/MizzenAI/HPSv3
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 5
๐น Abstract: HPSv3, a human preference score using a wide-spectrum dataset and uncertainty-aware ranking loss, enhances text-to-image generation quality through iterative refinement. AI-generated summary Evaluating text-to-image generation models requires alignment with human perception, yet existing human-centric metrics are constrained by limited data coverage, suboptimal feature extraction, and inefficient loss functions. To address these challenges, we introduce Human Preference Score v3 (HPSv3). (1) We release HPDv3 , the first wide-spectrum human preference dataset integrating 1.08M text-image pairs and 1.17M annotated pairwise comparisons from state-of-the-art generative models and low to high-quality real-world images. (2) We introduce a VLM-based preference model trained using an uncertainty-aware ranking loss for fine-grained ranking. Besides, we propose Chain-of-Human-Preference ( CoHP ), an iterative image refinement method that enhances quality without extra data, using HPSv3 to select the best image at each step. Extensive experiments demonstrate that HPSv3 serves as a robust metric for wide-spectrum image evaluation, and CoHP offers an efficient and human-aligned approach to improve image generation quality . The code and dataset are available at the HPSv3 Homepage.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.03789
โข PDF: https://arxiv.org/pdf/2508.03789
โข Project Page: https://mizzenai.github.io/HPSv3.project/
โข Github: https://github.com/MizzenAI/HPSv3
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: Droplet3D: Commonsense Priors from Videos Facilitate 3D Generation
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://www.arxiv.org/abs/2508.20470
โข PDF: https://arxiv.org/pdf/2508.20470
โข Github: https://dropletx.github.io/
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/DropletX/Droplet3D-4M
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://www.arxiv.org/abs/2508.20470
โข PDF: https://arxiv.org/pdf/2508.20470
โข Github: https://dropletx.github.io/
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/DropletX/Droplet3D-4M
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: CLIPSym: Delving into Symmetry Detection with CLIP
๐น Publication Date: Published on Aug 19
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.14197
โข PDF: https://arxiv.org/pdf/2508.14197
โข Github: https://github.com/timyoung2333/CLIPSym
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 19
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.14197
โข PDF: https://arxiv.org/pdf/2508.14197
โข Github: https://github.com/timyoung2333/CLIPSym
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: A Survey of Scientific Large Language Models: From Data Foundations to Agent Frontiers
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21148
โข PDF: https://arxiv.org/pdf/2508.21148
โข Github: https://github.com/open-sciencelab/Awesome-Scientific-Datasets-and-LLMs
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21148
โข PDF: https://arxiv.org/pdf/2508.21148
โข Github: https://github.com/open-sciencelab/Awesome-Scientific-Datasets-and-LLMs
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: Model-Task Alignment Drives Distinct RL Outcomes
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21188
โข PDF: https://arxiv.org/pdf/2508.21188
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21188
โข PDF: https://arxiv.org/pdf/2508.21188
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: Mimicking the Physicist's Eye:A VLM-centric Approach for Physics Formula Discovery
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17380
โข PDF: https://arxiv.org/pdf/2508.17380
โข Github: https://jiaaqiliu.github.io/VIPER-R1/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17380
โข PDF: https://arxiv.org/pdf/2508.17380
โข Github: https://jiaaqiliu.github.io/VIPER-R1/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: Deep Residual Echo State Networks: exploring residual orthogonal connections in untrained Recurrent Neural Networks
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21172
โข PDF: https://arxiv.org/pdf/2508.21172
โข Github: https://github.com/NennoMP/deepresesn
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21172
โข PDF: https://arxiv.org/pdf/2508.21172
โข Github: https://github.com/NennoMP/deepresesn
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: Quantization Robustness to Input Degradations for Object Detection
๐น Publication Date: Published on Aug 27
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19600
โข PDF: https://arxiv.org/pdf/2508.19600
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 27
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19600
โข PDF: https://arxiv.org/pdf/2508.19600
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: EduRABSA: An Education Review Dataset for Aspect-based Sentiment Analysis Tasks
๐น Publication Date: Published on Aug 23
๐น Paper Links:
โข arXiv Page: https://huggingface.co/collections/yhua219/edurabsa-dataset-68b59bad56a9e1384de7faf2
โข PDF: https://arxiv.org/pdf/2508.17008
โข Github: https://github.com/yhua219/edurabsa_dataset_and_annotation_tool
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/yhua219/EduRABSA_ASTE
โข https://huggingface.co/datasets/yhua219/EduRABSA_AOPE
โข https://huggingface.co/datasets/yhua219/EduRABSA_ASQE
โข https://huggingface.co/datasets/yhua219/EduRABSA_ACD
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 23
๐น Paper Links:
โข arXiv Page: https://huggingface.co/collections/yhua219/edurabsa-dataset-68b59bad56a9e1384de7faf2
โข PDF: https://arxiv.org/pdf/2508.17008
โข Github: https://github.com/yhua219/edurabsa_dataset_and_annotation_tool
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/yhua219/EduRABSA_ASTE
โข https://huggingface.co/datasets/yhua219/EduRABSA_AOPE
โข https://huggingface.co/datasets/yhua219/EduRABSA_ASQE
โข https://huggingface.co/datasets/yhua219/EduRABSA_ACD
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: PVPO: Pre-Estimated Value-Based Policy Optimization for Agentic Reasoning
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21104
โข PDF: https://arxiv.org/pdf/2508.21104
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.21104
โข PDF: https://arxiv.org/pdf/2508.21104
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: No Label Left Behind: A Unified Surface Defect Detection Model for all Supervision Regimes
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19060
โข PDF: https://arxiv.org/pdf/2508.19060
โข Github: https://github.com/blaz-r/SuperSimplenet
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19060
โข PDF: https://arxiv.org/pdf/2508.19060
โข Github: https://github.com/blaz-r/SuperSimplenet
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
โค1
๐น Title: SWE-Exp: Experience-Driven Software Issue Resolution
๐น Publication Date: Published on Jul 31
๐น Abstract: SWE-Exp enhances software issue resolution by systematically accumulating and leveraging repair expertise from past agent experiences, improving resolution rates. AI-generated summary Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS) . However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience - enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves state-of-the-art resolution rate (41.6% Pass@1) on SWE-bench-Verified under open-source agent frameworks . Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2507.23361
โข PDF: https://arxiv.org/pdf/2507.23361
โข Github: https://github.com/YerbaPage/SWE-Exp
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Jul 31
๐น Abstract: SWE-Exp enhances software issue resolution by systematically accumulating and leveraging repair expertise from past agent experiences, improving resolution rates. AI-generated summary Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS) . However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience - enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves state-of-the-art resolution rate (41.6% Pass@1) on SWE-bench-Verified under open-source agent frameworks . Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2507.23361
โข PDF: https://arxiv.org/pdf/2507.23361
โข Github: https://github.com/YerbaPage/SWE-Exp
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: How Can Input Reformulation Improve Tool Usage Accuracy in a Complex Dynamic Environment? A Study on ฯ-bench
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.20931
โข PDF: https://arxiv.org/pdf/2508.20931
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 28
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.20931
โข PDF: https://arxiv.org/pdf/2508.20931
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: Sculptor: Empowering LLMs with Cognitive Agency via Active Context Management
๐น Publication Date: Published on Aug 6
๐น Abstract: Sculptor, a framework for Active Context Management, enhances LLM performance on long contexts by enabling proactive attention and memory control, reducing proactive interference and improving reasoning reliability. AI-generated summary Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference , where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation , (2) summary , hide , and restore , and (3) intelligent search . Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks- PI-LLM ( proactive interference ) and NeedleBench Multi-Needle Reasoning -demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.04664
โข PDF: https://arxiv.org/pdf/2508.04664
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 6
๐น Abstract: Sculptor, a framework for Active Context Management, enhances LLM performance on long contexts by enabling proactive attention and memory control, reducing proactive interference and improving reasoning reliability. AI-generated summary Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference , where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation , (2) summary , hide , and restore , and (3) intelligent search . Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks- PI-LLM ( proactive interference ) and NeedleBench Multi-Needle Reasoning -demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.04664
โข PDF: https://arxiv.org/pdf/2508.04664
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
โค1
โI was laughed at when I bought crypto in 2019. Now my portfolioโs up 1200% โ and friends keep asking for โthe secretโโฆ
But nobody talks about the brutal truths I learned along the way. Want to see what everyoneโs missing? ๐ See it here
#ุฅุนูุงู InsideAds
But nobody talks about the brutal truths I learned along the way. Want to see what everyoneโs missing? ๐ See it here
#ุฅุนูุงู InsideAds
๐น Title: UI-Level Evaluation of ALLaM 34B: Measuring an Arabic-Centric LLM via HUMAIN Chat
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17378
โข PDF: https://arxiv.org/pdf/2508.17378
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17378
โข PDF: https://arxiv.org/pdf/2508.17378
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Title: T2R-bench: A Benchmark for Generating Article-Level Reports from Real World Industrial Tables
๐น Publication Date: Published on Aug 27
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19813
โข PDF: https://arxiv.org/pdf/2508.19813
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/Tele-AI/TeleTableBench
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT
๐น Publication Date: Published on Aug 27
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19813
โข PDF: https://arxiv.org/pdf/2508.19813
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/Tele-AI/TeleTableBench
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.iss.one/DataScienceT