LLMKE
π₯ Github: https://github.com/bohuizhang/llmke
π Paper: https://arxiv.org/pdf/2309.08491v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/lama
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/bohuizhang/llmke
π Paper: https://arxiv.org/pdf/2309.08491v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/lama
https://t.iss.one/DataScienceT
π6β€3
βοΈπ οΈ ChainForge: A Visual Toolkit for Prompt Engineering and LLM Hypothesis Testing
π₯ Github: https://github.com/ianarawjo/ChainForge
βοΈ Project: https://chainforge.ai
π Paper: https://arxiv.org/abs/2309.09128v1
https://t.iss.one/DataScienceT
pip install chainforgeπ₯ Github: https://github.com/ianarawjo/ChainForge
βοΈ Project: https://chainforge.ai
π Paper: https://arxiv.org/abs/2309.09128v1
https://t.iss.one/DataScienceT
π2β€1
π GPTFUZZER : Red Teaming Large Language Models with Auto-Generated Jailbreak Prompts
Fuzzer maintains over 90% attack success rate against ChatGPT and Llama-2 models.
π₯ Github: https://github.com/sherdencooper/gptfuzz
π Paper: https://arxiv.org/abs/2309.10253v1
β© Dataset: https://sites.google.com/view/llm-jailbreak-study
https://t.iss.one/DataScienceT
Fuzzer maintains over 90% attack success rate against ChatGPT and Llama-2 models.
π₯ Github: https://github.com/sherdencooper/gptfuzz
π Paper: https://arxiv.org/abs/2309.10253v1
β© Dataset: https://sites.google.com/view/llm-jailbreak-study
https://t.iss.one/DataScienceT
β€2π1
Distillation-in-dg
π₯ Github: https://github.com/vorobeevich/distillation-in-dg
π Paper: https://arxiv.org/pdf/2309.11446v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/office-home
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/vorobeevich/distillation-in-dg
π Paper: https://arxiv.org/pdf/2309.11446v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/office-home
https://t.iss.one/DataScienceT
β€2π2
π PAMS: Platform for Artificial Market Simulations
Artificial market simulation is a multi-agent simulation and run virtual markets on your computer.
π₯ Github: https://github.com/masanorihirano/pams
π Paper: https://arxiv.org/abs/2309.10729v1
β© Docs: https://pams.hirano.dev/
https://t.iss.one/DataScienceT
Artificial market simulation is a multi-agent simulation and run virtual markets on your computer.
$ pip install pamsπ₯ Github: https://github.com/masanorihirano/pams
π Paper: https://arxiv.org/abs/2309.10729v1
β© Docs: https://pams.hirano.dev/
https://t.iss.one/DataScienceT
β€3π2
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
https://t.iss.one/DataScienceT
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
https://t.iss.one/DataScienceT
β€2π1
π BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
π₯ Github: https://github.com/samsunglabs/bayesdll
π Paper: https://arxiv.org/abs/2309.12928v1
βοΈ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
https://t.iss.one/DataScienceT
New Bayesian neural network library for PyTorch for large-scale deep network
π₯ Github: https://github.com/samsunglabs/bayesdll
π Paper: https://arxiv.org/abs/2309.12928v1
βοΈ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
https://t.iss.one/DataScienceT
β€4π4
Do you enjoy reading this channel?
Perhaps you have thought about placing ads on it?
To do this, follow three simple steps:
1) Sign up: https://telega.io/c/dataScienceT
2) Top up the balance in a convenient way
3) Create an advertising post
If the topic of your post fits our channel, we will publish it with pleasure.
Perhaps you have thought about placing ads on it?
To do this, follow three simple steps:
1) Sign up: https://telega.io/c/dataScienceT
2) Top up the balance in a convenient way
3) Create an advertising post
If the topic of your post fits our channel, we will publish it with pleasure.
π6β€3
This media is not supported in your browser
VIEW IN TELEGRAM
π Listen, Think, and Understand
AI model that has both audio perception and a reasoning ability
π₯ Github: https://github.com/YuanGongND/ltu
βοΈ Demo: https://18c618fc8f07ec494e.gradio.live/
π Paper: https://arxiv.org/abs/2309.14405v1
π€ HH: https://huggingface.co/spaces/yuangongfdu/ltu-2
βοΈ Dataset: https://paperswithcode.com/dataset/iemocap
https://t.iss.one/DataScienceT
AI model that has both audio perception and a reasoning ability
π₯ Github: https://github.com/YuanGongND/ltu
βοΈ Demo: https://18c618fc8f07ec494e.gradio.live/
π Paper: https://arxiv.org/abs/2309.14405v1
π€ HH: https://huggingface.co/spaces/yuangongfdu/ltu-2
βοΈ Dataset: https://paperswithcode.com/dataset/iemocap
https://t.iss.one/DataScienceT
β fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
https://t.iss.one/DataScienceT
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAIπ₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
https://t.iss.one/DataScienceT
π4
βοΈScenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation
π₯ Github: https://github.com/Yuxinn-J/Scenimefy/tree/main
βοΈ Demo: https://huggingface.co/spaces/YuxinJ/Scenimefy
π Paper: https://arxiv.org/abs/2308.12968
β©Project: https://yuxinn-j.github.io/projects/Scenimefy.html
βοΈ Dataset: https://github.com/Yuxinn-J/Scenimefy/tree/main#open_file_folder-anime-scene-dataset
https://t.iss.one/DataScienceT
git clone https://github.com/Yuxinn-J/Scenimefy.gitπ₯ Github: https://github.com/Yuxinn-J/Scenimefy/tree/main
βοΈ Demo: https://huggingface.co/spaces/YuxinJ/Scenimefy
π Paper: https://arxiv.org/abs/2308.12968
β©Project: https://yuxinn-j.github.io/projects/Scenimefy.html
βοΈ Dataset: https://github.com/Yuxinn-J/Scenimefy/tree/main#open_file_folder-anime-scene-dataset
https://t.iss.one/DataScienceT
π4β€1
π€ Machine Learning Tutorials Repository
1. Python
2. Computer Vision: Techniques, algorithms
3. NLP
4. Matplotlib
5. NumPy
6. Pandas
7. MLOps
8. LLMs
9. PyTorch/TensorFlow
π GitHub: https://github.com/patchy631/machine-learning/tree/main
βοΈ https://t.iss.one/DataScienceT
1. Python
2. Computer Vision: Techniques, algorithms
3. NLP
4. Matplotlib
5. NumPy
6. Pandas
7. MLOps
8. LLMs
9. PyTorch/TensorFlow
git clone https://github.com/patchy631/machine-learningπ GitHub: https://github.com/patchy631/machine-learning/tree/main
βοΈ https://t.iss.one/DataScienceT
π16β€3
Data Science | Machine Learning with Python for Researchers
π€ Machine Learning Tutorials Repository 1. Python 2. Computer Vision: Techniques, algorithms 3. NLP 4. Matplotlib 5. NumPy 6. Pandas 7. MLOps 8. LLMs 9. PyTorch/TensorFlow git clone https://github.com/patchy631/machine-learning π GitHub: https://githβ¦
Total interactions required: 20 π