💥 MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
MMICL is a multimodal vision-language model with the ability to analyze and understand multiple images, as well as follow instructions.
🖥 Github: https://github.com/haozhezhao/mic
📕 Paper: https://arxiv.org/abs/2309.07915v1
⭐️ Datasets: https://paperswithcode.com/dataset/mmbench
https://t.iss.one/DataScienceT
MMICL is a multimodal vision-language model with the ability to analyze and understand multiple images, as well as follow instructions.
🖥 Github: https://github.com/haozhezhao/mic
📕 Paper: https://arxiv.org/abs/2309.07915v1
⭐️ Datasets: https://paperswithcode.com/dataset/mmbench
https://t.iss.one/DataScienceT
👍4
LLM_Fine_Tuning_Molecular_Properties
🖥 Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
📕 Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
🔥 Dataset: https://paperswithcode.com/dataset/moleculenet
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
📕 Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
🔥 Dataset: https://paperswithcode.com/dataset/moleculenet
https://t.iss.one/DataScienceT
👍12❤2
🦙 LLaVA: Large Language and Vision Assistant
🖥 Github: https://github.com/haotian-liu/LLaVA
📕 Paper: https://arxiv.org/pdf/2309.09958v1.pdf
⭐️ Datasets: https://paperswithcode.com/dataset/mmlu
https://t.iss.one/DataScienceT
git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA
🖥 Github: https://github.com/haotian-liu/LLaVA
📕 Paper: https://arxiv.org/pdf/2309.09958v1.pdf
⭐️ Datasets: https://paperswithcode.com/dataset/mmlu
https://t.iss.one/DataScienceT
👍7❤2
LLMKE
🖥 Github: https://github.com/bohuizhang/llmke
📕 Paper: https://arxiv.org/pdf/2309.08491v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/lama
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/bohuizhang/llmke
📕 Paper: https://arxiv.org/pdf/2309.08491v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/lama
https://t.iss.one/DataScienceT
👍6❤3
⛓️🛠️ ChainForge: A Visual Toolkit for Prompt Engineering and LLM Hypothesis Testing
🖥 Github: https://github.com/ianarawjo/ChainForge
⭐️ Project: https://chainforge.ai
📕 Paper: https://arxiv.org/abs/2309.09128v1
https://t.iss.one/DataScienceT
pip install chainforge
🖥 Github: https://github.com/ianarawjo/ChainForge
⭐️ Project: https://chainforge.ai
📕 Paper: https://arxiv.org/abs/2309.09128v1
https://t.iss.one/DataScienceT
👍2❤1
😠 GPTFUZZER : Red Teaming Large Language Models with Auto-Generated Jailbreak Prompts
Fuzzer maintains over 90% attack success rate against ChatGPT and Llama-2 models.
🖥 Github: https://github.com/sherdencooper/gptfuzz
📕 Paper: https://arxiv.org/abs/2309.10253v1
⏩ Dataset: https://sites.google.com/view/llm-jailbreak-study
https://t.iss.one/DataScienceT
Fuzzer maintains over 90% attack success rate against ChatGPT and Llama-2 models.
🖥 Github: https://github.com/sherdencooper/gptfuzz
📕 Paper: https://arxiv.org/abs/2309.10253v1
⏩ Dataset: https://sites.google.com/view/llm-jailbreak-study
https://t.iss.one/DataScienceT
❤2👍1
Distillation-in-dg
🖥 Github: https://github.com/vorobeevich/distillation-in-dg
📕 Paper: https://arxiv.org/pdf/2309.11446v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/office-home
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/vorobeevich/distillation-in-dg
📕 Paper: https://arxiv.org/pdf/2309.11446v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/office-home
https://t.iss.one/DataScienceT
❤2👍2
📊 PAMS: Platform for Artificial Market Simulations
Artificial market simulation is a multi-agent simulation and run virtual markets on your computer.
🖥 Github: https://github.com/masanorihirano/pams
📕 Paper: https://arxiv.org/abs/2309.10729v1
⏩ Docs: https://pams.hirano.dev/
https://t.iss.one/DataScienceT
Artificial market simulation is a multi-agent simulation and run virtual markets on your computer.
$ pip install pams
🖥 Github: https://github.com/masanorihirano/pams
📕 Paper: https://arxiv.org/abs/2309.10729v1
⏩ Docs: https://pams.hirano.dev/
https://t.iss.one/DataScienceT
❤3👍2
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pg-19
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pg-19
https://t.iss.one/DataScienceT
❤2😍1
🎓 BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
https://t.iss.one/DataScienceT
New Bayesian neural network library for PyTorch for large-scale deep network
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
https://t.iss.one/DataScienceT
❤4👍4
Do you enjoy reading this channel?
Perhaps you have thought about placing ads on it?
To do this, follow three simple steps:
1) Sign up: https://telega.io/c/dataScienceT
2) Top up the balance in a convenient way
3) Create an advertising post
If the topic of your post fits our channel, we will publish it with pleasure.
Perhaps you have thought about placing ads on it?
To do this, follow three simple steps:
1) Sign up: https://telega.io/c/dataScienceT
2) Top up the balance in a convenient way
3) Create an advertising post
If the topic of your post fits our channel, we will publish it with pleasure.
👍6❤3
This media is not supported in your browser
VIEW IN TELEGRAM
🔊 Listen, Think, and Understand
AI model that has both audio perception and a reasoning ability
🖥 Github: https://github.com/YuanGongND/ltu
☑️ Demo: https://18c618fc8f07ec494e.gradio.live/
📕 Paper: https://arxiv.org/abs/2309.14405v1
🤗 HH: https://huggingface.co/spaces/yuangongfdu/ltu-2
⭐️ Dataset: https://paperswithcode.com/dataset/iemocap
https://t.iss.one/DataScienceT
AI model that has both audio perception and a reasoning ability
🖥 Github: https://github.com/YuanGongND/ltu
☑️ Demo: https://18c618fc8f07ec494e.gradio.live/
📕 Paper: https://arxiv.org/abs/2309.14405v1
🤗 HH: https://huggingface.co/spaces/yuangongfdu/ltu-2
⭐️ Dataset: https://paperswithcode.com/dataset/iemocap
https://t.iss.one/DataScienceT
➕ fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
🖥 Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
https://t.iss.one/DataScienceT
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAI
🖥 Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
https://t.iss.one/DataScienceT
👍4
⭐️Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation
🖥 Github: https://github.com/Yuxinn-J/Scenimefy/tree/main
☑️ Demo: https://huggingface.co/spaces/YuxinJ/Scenimefy
📕 Paper: https://arxiv.org/abs/2308.12968
⏩Project: https://yuxinn-j.github.io/projects/Scenimefy.html
⭐️ Dataset: https://github.com/Yuxinn-J/Scenimefy/tree/main#open_file_folder-anime-scene-dataset
https://t.iss.one/DataScienceT
git clone https://github.com/Yuxinn-J/Scenimefy.git
🖥 Github: https://github.com/Yuxinn-J/Scenimefy/tree/main
☑️ Demo: https://huggingface.co/spaces/YuxinJ/Scenimefy
📕 Paper: https://arxiv.org/abs/2308.12968
⏩Project: https://yuxinn-j.github.io/projects/Scenimefy.html
⭐️ Dataset: https://github.com/Yuxinn-J/Scenimefy/tree/main#open_file_folder-anime-scene-dataset
https://t.iss.one/DataScienceT
👍4❤1