Forwarded from Data Science Books
Machine Learning for Data Science Handbook (2023)
This book is available now only in paid channel
Pages: 975 pages
Rate: ⭐️⭐️⭐️⭐️⭐️
Cost of subscription in Paid channel is 5$ for one time and forever
Channel link: https://t.iss.one/+LnCmAFJO3tNmYjUy
Paid channel contain important book and udemy and other courses as zip files
Welcome all
Contact @Hussein_sheikho
This book is available now only in paid channel
Pages: 975 pages
Rate: ⭐️⭐️⭐️⭐️⭐️
Cost of subscription in Paid channel is 5$ for one time and forever
Channel link: https://t.iss.one/+LnCmAFJO3tNmYjUy
Paid channel contain important book and udemy and other courses as zip files
Welcome all
Contact @Hussein_sheikho
👍4
Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition
🖥 Github: https://github.com/osvai/ske2grid
📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ucf101
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/osvai/ske2grid
📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ucf101
https://t.iss.one/DataScienceT
👍2
EQ-Net: Elastic Quantization Neural Networks
🖥 Github: https://github.com/xuke225/eq-net
📕 Paper: https://arxiv.org/pdf/2308.07650v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/xuke225/eq-net
📕 Paper: https://arxiv.org/pdf/2308.07650v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/imagenet
https://t.iss.one/DataScienceT
👍3❤1
This media is not supported in your browser
VIEW IN TELEGRAM
🏅MixSort
MixSort is the proposed baseline tracker in SportMOT.
🖥 Github: https://github.com/MCG-NJU/MixSort
📕 Paper: https://arxiv.org/pdf/2304.05170.pdf
⭐️ SportsMOT: https://github.com/MCG-NJU/SportsMOT
https://t.iss.one/DataScienceT
MixSort is the proposed baseline tracker in SportMOT.
🖥 Github: https://github.com/MCG-NJU/MixSort
📕 Paper: https://arxiv.org/pdf/2304.05170.pdf
⭐️ SportsMOT: https://github.com/MCG-NJU/SportsMOT
https://t.iss.one/DataScienceT
❤4👍1
⚡prompt2model - Generate Deployable Models from Instructions
prompt2model - Generate Deployable Models from Natural Language Instructions
🖥 Github: https://github.com/neulab/prompt2model
📕 Paper: https://arxiv.org/abs/2308.12261v1
⭐️ Demo: https://github.com/facebookresearch/sonar#usage
☑️ Dataset: https://paperswithcode.com/dataset/mconala
https://t.iss.one/DataScienceT
prompt2model - Generate Deployable Models from Natural Language Instructions
pip install prompt2model
🖥 Github: https://github.com/neulab/prompt2model
📕 Paper: https://arxiv.org/abs/2308.12261v1
⭐️ Demo: https://github.com/facebookresearch/sonar#usage
☑️ Dataset: https://paperswithcode.com/dataset/mconala
https://t.iss.one/DataScienceT
❤3👍3
🔥Dense Text-to-Image Generation with Attention Modulation
DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.
🖥 Github: https://github.com/naver-ai/densediffusion
📕 Paper: https://arxiv.org/abs/2308.12964v1
⭐️ Dataset: https://paperswithcode.com/dataset/coco
https://t.iss.one/DataScienceT
DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.
🖥 Github: https://github.com/naver-ai/densediffusion
📕 Paper: https://arxiv.org/abs/2308.12964v1
⭐️ Dataset: https://paperswithcode.com/dataset/coco
https://t.iss.one/DataScienceT
👍3
Dynamic Low-Rank Instance Adaptation for Universal Neural Image Compression
🖥 Github: https://github.com/llvy21/duic
📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pixel-art
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/llvy21/duic
📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pixel-art
https://t.iss.one/DataScienceT
👍4
LibCity
🖥 Github: https://github.com/libcity/bigscity-libcity
📕 Paper: https://arxiv.org/pdf/2308.12899v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/taxibj
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/libcity/bigscity-libcity
📕 Paper: https://arxiv.org/pdf/2308.12899v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/taxibj
https://t.iss.one/DataScienceT
👍4
S3A: Towards Realistic Zero-Shot Classification via Self Structural Semantic Alignment
🖥 Github: https://github.com/sheng-eatamath/s3a
📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-100
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/sheng-eatamath/s3a
📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-100
https://t.iss.one/DataScienceT
❤4👍1
Forwarded from Python | Machine Learning | Coding | R
🖥 Roadmap of free courses for learning Python and Machine learning.
▪Data Science
▪ AI/ML
▪ Web Dev
1. Start with this
https://kaggle.com/learn/python
2. Take any one of these
❯ https://openclassrooms.com/courses/6900856-learn-programming-with-python
❯ https://scaler.com/topics/course/python-for-beginners/
❯ https://simplilearn.com/learn-python-basics-free-course-skillup
3. Then take this
https://netacad.com/courses/programming/pcap-programming-essentials-python
4. Attempt for this certification
https://freecodecamp.org/learn/scientific-computing-with-python/
5. Take it to next level
❯ Data Scrapping, NumPy, Pandas
https://scaler.com/topics/course/python-for-data-science/
❯ Data Analysis
https://openclassrooms.com/courses/2304731-learn-python-basics-for-data-analysis
❯ Data Visualization
https://kaggle.com/learn/data-visualization
❯ Django
https://openclassrooms.com/courses/6967196-create-a-web-application-with-django
❯ Machine Learning
https://developers.google.com/machine-learning/crash-course
❯ Deep Learning (TensorFlow)
https://kaggle.com/learn/intro-to-deep-learning
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
▪Data Science
▪ AI/ML
▪ Web Dev
1. Start with this
https://kaggle.com/learn/python
2. Take any one of these
❯ https://openclassrooms.com/courses/6900856-learn-programming-with-python
❯ https://scaler.com/topics/course/python-for-beginners/
❯ https://simplilearn.com/learn-python-basics-free-course-skillup
3. Then take this
https://netacad.com/courses/programming/pcap-programming-essentials-python
4. Attempt for this certification
https://freecodecamp.org/learn/scientific-computing-with-python/
5. Take it to next level
❯ Data Scrapping, NumPy, Pandas
https://scaler.com/topics/course/python-for-data-science/
❯ Data Analysis
https://openclassrooms.com/courses/2304731-learn-python-basics-for-data-analysis
❯ Data Visualization
https://kaggle.com/learn/data-visualization
❯ Django
https://openclassrooms.com/courses/6967196-create-a-web-application-with-django
❯ Machine Learning
https://developers.google.com/machine-learning/crash-course
❯ Deep Learning (TensorFlow)
https://kaggle.com/learn/intro-to-deep-learning
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
❤13👍10
🐕 Reprogramming Under Constraints
🖥 Github: https://github.com/landskape-ai/reprogram_lt
📕 Paper: https://arxiv.org/pdf/2308.14969v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/landskape-ai/reprogram_lt
📕 Paper: https://arxiv.org/pdf/2308.14969v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
https://t.iss.one/DataScienceT
❤1👍1
Forwarded from Python | Machine Learning | Coding | R
🔥 Master Data Science for free
📂 Computer Science 101
https://online.stanford.edu/courses/soe-ycscs101-computer-science-101
📂 Machine Learning Specialization
https://coursera.org/specializations/machine-learning-introduction
📂 Artificial Intelligence for Robotics
https://udacity.com/course/artificial-intelligence-for-robotics--cs373
📂 Designing Your Career
https://online.stanford.edu/courses/tds-y0003-designing-your-career
📂 Stanford: Game Theory
https://online.stanford.edu/courses/soe-ycs0002-game-theory
📂 Machine Learning with Python
https://www.freecodecamp.org/learn/machine-learning-with-python/
📂 Probability and Statistics: To P or Not To P? (Coursera)
https://www.coursera.org/learn/probability-statistics
📂 Numpy complete free course
https://www.youtube.com/playlist?list=PLysMDSbb9Hcz3Gdi9oV-btohZ9zhths-r
📂Advanced Machine Learning
https://www.kaggle.com/learn/intro-to-machine-learning
📂 Stat 110: Harvard University (YouTube)
https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=1
📂 The Open Source Data Science Masters
https://github.com/datasciencemasters/go
📂 Google - artificial intelligence for everyone
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone
📂Microsoft - AI for Beginners
https://microsoft.github.io/AI-For-Beginners
📂 IBM - AI for Everyone: Master the Basics
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics
📂 Harvard - Introduction to Artificial Intelligence with Python
https://cs50.harvard.edu/ai/2023
📂 Introduction to Generative AI
https://cloudskillsboost.google/journeys/118
📂 Deep Learning - Finetuning Large Language Models
https://deeplearning.ai/short-courses/finetuning-large-language-models/
📂Microsoft - AI Basics in Azure
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/
https://t.iss.one/CodeProgrammer
📂Linux Foundation
https://edx.org/learn/computer-programming/the-linux-foundation-data-and-ai-fundamentals
📂 12 Linux courses:
https://t.iss.one/linuxkalii/538
📂 Alison - 13 free AI courses
https://alison.com/tag/artificial-intelligence
📂 Artificial Intelligence Projects:
https://mygreatlearning.com/academy/learn-for-free/courses/artificial-intelligence-projects
📂 Introduction to Internet of Things:
https://online.stanford.edu/courses/xee100-introduction-internet-things
📂 Graph Search, Shortest Paths, and Data Structures
https://coursera.org/learn/algorithms-graphs-data-structures
📂 Python:
https://cs50.harvard.edu/python/2022/
📂 Machine Learning:
https://developers.google.com/machine-learning/crash-course
📂 Deep Learning
https://introtodeeplearning.com
📂 Data Analysis
https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis
📂 Linear algebra:
https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra
📂 Algebra basics
https://www.khanacademy.org/math/algebra-basics
📂 Excel and PowerBI
https://learn.microsoft.com/training/paths/modern-analytics/
📂 Data visualization:
https://pll.harvard.edu/course/data-science-visualization
📂 PowerBI
https://learn.microsoft.com/users/collinschedler-0717/collections/m14nt4rdwnwp04
📂 Tableau:
https://tableau.com/learn/training
📂 Statistics:
https://cognitiveclass.ai/courses/statistics-101
📂 SQL:
https://online.stanford.edu/courses/soe-ydatabases0005-databases-relational-databases-and-sql
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
📂 Computer Science 101
https://online.stanford.edu/courses/soe-ycscs101-computer-science-101
📂 Machine Learning Specialization
https://coursera.org/specializations/machine-learning-introduction
📂 Artificial Intelligence for Robotics
https://udacity.com/course/artificial-intelligence-for-robotics--cs373
📂 Designing Your Career
https://online.stanford.edu/courses/tds-y0003-designing-your-career
📂 Stanford: Game Theory
https://online.stanford.edu/courses/soe-ycs0002-game-theory
📂 Machine Learning with Python
https://www.freecodecamp.org/learn/machine-learning-with-python/
📂 Probability and Statistics: To P or Not To P? (Coursera)
https://www.coursera.org/learn/probability-statistics
📂 Numpy complete free course
https://www.youtube.com/playlist?list=PLysMDSbb9Hcz3Gdi9oV-btohZ9zhths-r
📂Advanced Machine Learning
https://www.kaggle.com/learn/intro-to-machine-learning
📂 Stat 110: Harvard University (YouTube)
https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=1
📂 The Open Source Data Science Masters
https://github.com/datasciencemasters/go
📂 Google - artificial intelligence for everyone
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone
📂Microsoft - AI for Beginners
https://microsoft.github.io/AI-For-Beginners
📂 IBM - AI for Everyone: Master the Basics
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics
📂 Harvard - Introduction to Artificial Intelligence with Python
https://cs50.harvard.edu/ai/2023
📂 Introduction to Generative AI
https://cloudskillsboost.google/journeys/118
📂 Deep Learning - Finetuning Large Language Models
https://deeplearning.ai/short-courses/finetuning-large-language-models/
📂Microsoft - AI Basics in Azure
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/
https://t.iss.one/CodeProgrammer
📂Linux Foundation
https://edx.org/learn/computer-programming/the-linux-foundation-data-and-ai-fundamentals
📂 12 Linux courses:
https://t.iss.one/linuxkalii/538
📂 Alison - 13 free AI courses
https://alison.com/tag/artificial-intelligence
📂 Artificial Intelligence Projects:
https://mygreatlearning.com/academy/learn-for-free/courses/artificial-intelligence-projects
📂 Introduction to Internet of Things:
https://online.stanford.edu/courses/xee100-introduction-internet-things
📂 Graph Search, Shortest Paths, and Data Structures
https://coursera.org/learn/algorithms-graphs-data-structures
📂 Python:
https://cs50.harvard.edu/python/2022/
📂 Machine Learning:
https://developers.google.com/machine-learning/crash-course
📂 Deep Learning
https://introtodeeplearning.com
📂 Data Analysis
https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis
📂 Linear algebra:
https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra
📂 Algebra basics
https://www.khanacademy.org/math/algebra-basics
📂 Excel and PowerBI
https://learn.microsoft.com/training/paths/modern-analytics/
📂 Data visualization:
https://pll.harvard.edu/course/data-science-visualization
📂 PowerBI
https://learn.microsoft.com/users/collinschedler-0717/collections/m14nt4rdwnwp04
📂 Tableau:
https://tableau.com/learn/training
📂 Statistics:
https://cognitiveclass.ai/courses/statistics-101
📂 SQL:
https://online.stanford.edu/courses/soe-ydatabases0005-databases-relational-databases-and-sql
https://t.iss.one/CodeProgrammer
Please more reaction with our posts
❤17👍11
imbalanced-DL: Deep Imbalanced Learning in Python
🖥 Github: https://github.com/ntucllab/imbalanced-dl
📕 Paper: https://arxiv.org/pdf/2308.15457v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/ntucllab/imbalanced-dl
📕 Paper: https://arxiv.org/pdf/2308.15457v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
https://t.iss.one/DataScienceT
❤5👍2
💻PyGraft: Configurable Generation of Schemas and Knowledge Graphs at Your Fingertips
🖥 Github: https://github.com/nicolas-hbt/pygraft
📕 Paper: https://arxiv.org/abs/2309.03685
⭐️ Docs: https://pygraft.readthedocs.io/en/latest/
https://t.iss.one/DataScienceT
🖥 Github: https://github.com/nicolas-hbt/pygraft
📕 Paper: https://arxiv.org/abs/2309.03685
⭐️ Docs: https://pygraft.readthedocs.io/en/latest/
https://t.iss.one/DataScienceT
❤3👍1