Data Science | Machine Learning with Python for Researchers
31.7K subscribers
1.73K photos
102 videos
22 files
2K links
Admin: @HusseinSheikho

The Data Science and Python channel is for researchers and advanced programmers

Buy ads: https://telega.io/c/dataScienceT
Download Telegram
Forwarded from Data Science Books
Machine Learning for Data Science Handbook (2023)

This book is available now only in paid channel

Pages: 975 pages
Rate: ⭐️⭐️⭐️⭐️⭐️

Cost of subscription in Paid channel is 5$ for one time and forever

Channel link: https://t.iss.one/+LnCmAFJO3tNmYjUy

Paid channel contain important book and udemy and other courses as zip files

Welcome all
Contact @Hussein_sheikho
👍4
Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

🖥 Github: https://github.com/osvai/ske2grid

📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/ucf101

https://t.iss.one/DataScienceT
👍2
prompt2model - Generate Deployable Models from Instructions

prompt2model - Generate Deployable Models from Natural Language Instructions


pip install prompt2model

🖥 Github: https://github.com/neulab/prompt2model

📕 Paper: https://arxiv.org/abs/2308.12261v1

⭐️ Demo: https://github.com/facebookresearch/sonar#usage

☑️ Dataset: https://paperswithcode.com/dataset/mconala

https://t.iss.one/DataScienceT
3👍3
🔥Dense Text-to-Image Generation with Attention Modulation

DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.

🖥 Github: https://github.com/naver-ai/densediffusion

📕 Paper: https://arxiv.org/abs/2308.12964v1

⭐️ Dataset: https://paperswithcode.com/dataset/coco

https://t.iss.one/DataScienceT
👍3
Dynamic Low-Rank Instance Adaptation for Universal Neural Image Compression

🖥 Github: https://github.com/llvy21/duic

📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/pixel-art

https://t.iss.one/DataScienceT
👍4
S3A: Towards Realistic Zero-Shot Classification via Self Structural Semantic Alignment

🖥 Github: https://github.com/sheng-eatamath/s3a

📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/cifar-100

https://t.iss.one/DataScienceT
4👍1
🔥 Master Data Science for free

📂 Computer Science 101
https://online.stanford.edu/courses/soe-ycscs101-computer-science-101

📂 Machine Learning Specialization
https://coursera.org/specializations/machine-learning-introduction

📂 Artificial Intelligence for Robotics
https://udacity.com/course/artificial-intelligence-for-robotics--cs373

📂 Designing Your Career
https://online.stanford.edu/courses/tds-y0003-designing-your-career

📂 Stanford: Game Theory
https://online.stanford.edu/courses/soe-ycs0002-game-theory

📂 Machine Learning with Python
https://www.freecodecamp.org/learn/machine-learning-with-python/

📂 Probability and Statistics: To P or Not To P? (Coursera)
https://www.coursera.org/learn/probability-statistics

📂 Numpy complete free course
https://www.youtube.com/playlist?list=PLysMDSbb9Hcz3Gdi9oV-btohZ9zhths-r

📂Advanced Machine Learning
https://www.kaggle.com/learn/intro-to-machine-learning

📂 Stat 110: Harvard University (YouTube)
https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=1

📂 The Open Source Data Science Masters
https://github.com/datasciencemasters/go

📂 Google - artificial intelligence for everyone
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone

📂Microsoft - AI for Beginners
https://microsoft.github.io/AI-For-Beginners

📂 IBM - AI for Everyone: Master the Basics
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics

📂 Harvard - Introduction to Artificial Intelligence with Python
https://cs50.harvard.edu/ai/2023

📂 Introduction to Generative AI
https://cloudskillsboost.google/journeys/118

📂 Deep Learning - Finetuning Large Language Models
https://deeplearning.ai/short-courses/finetuning-large-language-models/

📂Microsoft - AI Basics in Azure
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/

https://t.iss.one/CodeProgrammer

📂Linux Foundation
https://edx.org/learn/computer-programming/the-linux-foundation-data-and-ai-fundamentals

📂 12 Linux courses:
https://t.iss.one/linuxkalii/538

📂 Alison - 13 free AI courses
https://alison.com/tag/artificial-intelligence

📂 Artificial Intelligence Projects:
https://mygreatlearning.com/academy/learn-for-free/courses/artificial-intelligence-projects

📂 Introduction to Internet of Things:
https://online.stanford.edu/courses/xee100-introduction-internet-things

📂 Graph Search, Shortest Paths, and Data Structures
https://coursera.org/learn/algorithms-graphs-data-structures

📂 Python:
https://cs50.harvard.edu/python/2022/

📂 Machine Learning:
https://developers.google.com/machine-learning/crash-course

📂 Deep Learning
https://introtodeeplearning.com

📂 Data Analysis
https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis

📂 Linear algebra:
https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra

📂 Algebra basics
https://www.khanacademy.org/math/algebra-basics

📂 Excel and PowerBI
https://learn.microsoft.com/training/paths/modern-analytics/

📂 Data visualization:
https://pll.harvard.edu/course/data-science-visualization

📂 PowerBI
https://learn.microsoft.com/users/collinschedler-0717/collections/m14nt4rdwnwp04

📂 Tableau:
https://tableau.com/learn/training

📂 Statistics:
https://cognitiveclass.ai/courses/statistics-101

📂 SQL:
https://online.stanford.edu/courses/soe-ydatabases0005-databases-relational-databases-and-sql

https://t.iss.one/CodeProgrammer

Please more reaction with our posts
17👍11
💻PyGraft: Configurable Generation of Schemas and Knowledge Graphs at Your Fingertips

🖥 Github: https://github.com/nicolas-hbt/pygraft

📕 Paper: https://arxiv.org/abs/2309.03685

⭐️ Docs: https://pygraft.readthedocs.io/en/latest/

https://t.iss.one/DataScienceT
3👍1