Pandas for Data Science
Learning Path โ Skills: Pandas, Data Science, Data Visualization
https://realpython.com/learning-paths/pandas-data-science/
https://t.iss.one/DataScienceT
Learning Path โ Skills: Pandas, Data Science, Data Visualization
https://realpython.com/learning-paths/pandas-data-science/
https://t.iss.one/DataScienceT
โคโ๐ฅ5
Openicl
New open-source toolkit for ICL and LLM evaluation.
โฉ Paper: https://arxiv.org/abs/2303.02913
โญ๏ธ Dataset: https://paperswithcode.com/dataset/gsm8k
๐จ Docs: https://github.com/shark-nlp/openicl#docs
โฉ Examples: https://github.com/Shark-NLP/OpenICL/tree/main/examples
https://t.iss.one/DataScienceT
New open-source toolkit for ICL and LLM evaluation.
pip install openicl๐ฅ Github: https://github.com/shark-nlp/openicl
โฉ Paper: https://arxiv.org/abs/2303.02913
โญ๏ธ Dataset: https://paperswithcode.com/dataset/gsm8k
๐จ Docs: https://github.com/shark-nlp/openicl#docs
โฉ Examples: https://github.com/Shark-NLP/OpenICL/tree/main/examples
https://t.iss.one/DataScienceT
โคโ๐ฅ3โค2
An important collection of the 15 best machine learning cheat sheets.
ู ุฌู ูุนุฉ ู ูู ุฉ ุงูุงูุถู ูกูฅ ูุฑูุฉ ุบุด ูู ู ุฌุงู ุงูุชุนูู ุงูุขูู.
1- Supervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf
2- Unsupervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf
3- Deep Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf
4- Machine Learning Tips and Tricks
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf
5- Probabilities and Statistics
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf
6- Comprehensive Stanford Master Cheat Sheet
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf
7- Linear Algebra and Calculus
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf
8- Data Science Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf
9- Keras Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf
10- Deep Learning with Keras Cheat Sheet
https://github.com/rstudio/cheatsheets/raw/master/keras.pdf
11- Visual Guide to Neural Network Infrastructures
https://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png
12- Skicit-Learn Python Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf
13- Scikit-learn Cheat Sheet: Choosing the Right Estimator
https://scikit-learn.org/stable/tutorial/machine_learning_map/
14- Tensorflow Cheat Sheet
https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf
15- Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
โณ๏ธ ุณุงูู ุจูู ู ู ุฌุชู ุนูุง ู ู ุฎูุงู ุงุถุงูุฉ ุงูุงุตุฏูุงุก ุงู ู ุดุงุฑูุฉ ุงูู ูุดูุฑ.
ู ุฌู ูุนุฉ ู ูู ุฉ ุงูุงูุถู ูกูฅ ูุฑูุฉ ุบุด ูู ู ุฌุงู ุงูุชุนูู ุงูุขูู.
1- Supervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf
2- Unsupervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf
3- Deep Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf
4- Machine Learning Tips and Tricks
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf
5- Probabilities and Statistics
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf
6- Comprehensive Stanford Master Cheat Sheet
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf
7- Linear Algebra and Calculus
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf
8- Data Science Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf
9- Keras Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf
10- Deep Learning with Keras Cheat Sheet
https://github.com/rstudio/cheatsheets/raw/master/keras.pdf
11- Visual Guide to Neural Network Infrastructures
https://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png
12- Skicit-Learn Python Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf
13- Scikit-learn Cheat Sheet: Choosing the Right Estimator
https://scikit-learn.org/stable/tutorial/machine_learning_map/
14- Tensorflow Cheat Sheet
https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf
15- Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
โณ๏ธ ุณุงูู ุจูู ู ู ุฌุชู ุนูุง ู ู ุฎูุงู ุงุถุงูุฉ ุงูุงุตุฏูุงุก ุงู ู ุดุงุฑูุฉ ุงูู ูุดูุฑ.
GitHub
stanford-cs-229-machine-learning/en/cheatsheet-supervised-learning.pdf at master ยท afshinea/stanford-cs-229-machine-learning
VIP cheatsheets for Stanford's CS 229 Machine Learning - afshinea/stanford-cs-229-machine-learning
๐4โคโ๐ฅ2
This media is not supported in your browser
VIEW IN TELEGRAM
X-Avatar: Expressive Human Avatars
๐ฅ Github: https://github.com/Skype-line/X-Avatar
โฉ Paper: https://arxiv.org/abs/2303.04805
๐จ Dataset: https://github.com/Skype-line/X-Avatar/blob/main/xxx
โฉ Project: https://skype-line.github.io/projects/X-Avatar/
https://t.iss.one/DataScienceT
๐ฅ Github: https://github.com/Skype-line/X-Avatar
โฉ Paper: https://arxiv.org/abs/2303.04805
๐จ Dataset: https://github.com/Skype-line/X-Avatar/blob/main/xxx
โฉ Project: https://skype-line.github.io/projects/X-Avatar/
https://t.iss.one/DataScienceT
โคโ๐ฅ2
Datasets
Datasets collected for network science, deep learning and general machine learning research.
Github: https://github.com/benedekrozemberczki/datasets
Paper: https://arxiv.org/abs/2101.03091v1
Invite your friends ๐น๐น
@DataScience_Books
Datasets collected for network science, deep learning and general machine learning research.
Github: https://github.com/benedekrozemberczki/datasets
Paper: https://arxiv.org/abs/2101.03091v1
Invite your friends ๐น๐น
@DataScience_Books
๐4โคโ๐ฅ3
Multivariate Probabilistic Time Series Forecasting with Informer
Efficient transformer-based model for LSTF.
Method introduces a Probabilistic Attention mechanism to select the โactiveโ queries rather than the โlazyโ queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention.
๐คHugging face:
https://huggingface.co/blog/informer
โฉ Paper:
https://huggingface.co/docs/transformers/main/en/model_doc/informer
โญ๏ธ Colab:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb
๐จ Dataset:
https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform
https://t.iss.one/DataScienceT
Efficient transformer-based model for LSTF.
Method introduces a Probabilistic Attention mechanism to select the โactiveโ queries rather than the โlazyโ queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention.
๐คHugging face:
https://huggingface.co/blog/informer
โฉ Paper:
https://huggingface.co/docs/transformers/main/en/model_doc/informer
โญ๏ธ Colab:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb
๐จ Dataset:
https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform
https://t.iss.one/DataScienceT
โคโ๐ฅ2๐1
Linear Algebra in Python: Matrix Inverses and Least Squares
https://realpython.com/python-linear-algebra/
https://realpython.com/python-linear-algebra/
โคโ๐ฅ4๐1
GPT-4 Technical Report
Source code: https://github.com/openai/evals
Paper: https://cdn.openai.com/papers/gpt-4.pdf
Source code: https://github.com/openai/evals
Paper: https://cdn.openai.com/papers/gpt-4.pdf
โคโ๐ฅ4
Tuned Lens ๐
Simple interface training and evaluating tuned lenses. A tuned lens allows us to peak at the iterative computations a transformer uses to compute the next token.
๐ฅ Github: https://github.com/alignmentresearch/tuned-lens
โฉ Paper: https://arxiv.org/abs/2303.08112v1
โญ๏ธ Dataset: https://paperswithcode.com/dataset/the-pile
๐ฅ Colab: https://colab.research.google.com/github/AlignmentResearch/tuned-lens/blob/main/notebooks/interactive.ipynb
https://t.iss.one/DataScienceT
Simple interface training and evaluating tuned lenses. A tuned lens allows us to peak at the iterative computations a transformer uses to compute the next token.
pip install tuned-lens
๐ฅ Github: https://github.com/alignmentresearch/tuned-lens
โฉ Paper: https://arxiv.org/abs/2303.08112v1
โญ๏ธ Dataset: https://paperswithcode.com/dataset/the-pile
๐ฅ Colab: https://colab.research.google.com/github/AlignmentResearch/tuned-lens/blob/main/notebooks/interactive.ipynb
https://t.iss.one/DataScienceT
โคโ๐ฅ6
โคโ๐ฅ1
OpenSeeD
A Simple Framework for Open-Vocabulary Segmentation and Detection
๐ฅ Github: https://github.com/idea-research/openseed
โฉ Paper: https://arxiv.org/abs/2303.08131v2
๐จ Dataset: https://paperswithcode.com/dataset/objects365
https://t.iss.one/DataScienceT
A Simple Framework for Open-Vocabulary Segmentation and Detection
๐ฅ Github: https://github.com/idea-research/openseed
โฉ Paper: https://arxiv.org/abs/2303.08131v2
๐จ Dataset: https://paperswithcode.com/dataset/objects365
https://t.iss.one/DataScienceT
โคโ๐ฅ3
Contrastive Semi-supervised Learning for Underwater Image Restoration via Reliable Bank
๐ฅ Github: https://github.com/huang-shirui/semi-uir
โฉ Paper: https://arxiv.org/abs/2303.09101v1
๐จ Project: https://paperswithcode.com/dataset/uieb
https://t.iss.one/DataScienceT
๐ฅ Github: https://github.com/huang-shirui/semi-uir
โฉ Paper: https://arxiv.org/abs/2303.09101v1
๐จ Project: https://paperswithcode.com/dataset/uieb
https://t.iss.one/DataScienceT
โคโ๐ฅ2
This media is not supported in your browser
VIEW IN TELEGRAM
WebSHAP: Towards Explaining Any Machine Learning Models Anywhere
๐ฅ Github: https://github.com/poloclub/webshap
โฉ Paper: https://arxiv.org/abs/2303.09545v1
๐จ Project: https://poloclub.github.io/webshap
https://t.iss.one/DataScienceT
๐ฅ Github: https://github.com/poloclub/webshap
โฉ Paper: https://arxiv.org/abs/2303.09545v1
๐จ Project: https://poloclub.github.io/webshap
https://t.iss.one/DataScienceT
โคโ๐ฅ3๐1
๐ฅ GigaGAN - Pytorch
Implementation of GigaGAN, new SOTA GAN out of Adobe.
https://github.com/lucidrains/gigagan-pytorch
https://t.iss.one/DataScienceT
Implementation of GigaGAN, new SOTA GAN out of Adobe.
https://github.com/lucidrains/gigagan-pytorch
https://t.iss.one/DataScienceT
โคโ๐ฅ2
Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation (CVPR 2023)
Novel Diffusion Audio-Gesture Transformer is devised to better attend to the information from multiple modalities and model the long-term temporal dependency.
๐ฅ Github: https://github.com/advocate99/diffgesture
โฉ Paper: https://arxiv.org/abs/2303.09119v1
๐จ Dataset: https://paperswithcode.com/dataset/beat
https://t.iss.one/DataScienceT
Novel Diffusion Audio-Gesture Transformer is devised to better attend to the information from multiple modalities and model the long-term temporal dependency.
๐ฅ Github: https://github.com/advocate99/diffgesture
โฉ Paper: https://arxiv.org/abs/2303.09119v1
๐จ Dataset: https://paperswithcode.com/dataset/beat
https://t.iss.one/DataScienceT
๐3โคโ๐ฅ2
Deep Metric Learning for Unsupervised CD
๐ฅ Github: https://github.com/wgcban/metric-cd
โฉ Paper: https://arxiv.org/abs/2303.09536v1
https://t.iss.one/DataScienceT
๐ฅ Github: https://github.com/wgcban/metric-cd
โฉ Paper: https://arxiv.org/abs/2303.09536v1
https://t.iss.one/DataScienceT
๐2โคโ๐ฅ1
This media is not supported in your browser
VIEW IN TELEGRAM
โ๏ธ ViperGPT: Visual Inference via Python Execution for Reasoning
ViperGPT, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query.
๐ฅ Github: https://github.com/cvlab-columbia/viper
โฉ Paper: https://arxiv.org/pdf/2303.08128.pdf
๐จ Project: https://paperswithcode.com/dataset/beat
https://t.iss.one/DataScienceT
ViperGPT, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query.
๐ฅ Github: https://github.com/cvlab-columbia/viper
โฉ Paper: https://arxiv.org/pdf/2303.08128.pdf
๐จ Project: https://paperswithcode.com/dataset/beat
https://t.iss.one/DataScienceT
๐3๐2โคโ๐ฅ1
๐ฅ Zero-1-to-3: Zero-shot One Image to 3D Object
Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image.
๐ฅ Github: https://github.com/cvlab-columbia/zero123
๐ค Hugging face: https://huggingface.co/spaces/cvlab/zero123-live
โฉ Paper: https://arxiv.org/abs/2303.11328v1
โฉ Dataset: https://zero123.cs.columbia.edu/
๐จ Project: https://paperswithcode.com/dataset/beat
โญ๏ธ Demo: https://huggingface.co/spaces/cvlab/zero123
https://t.iss.one/DataScienceT
Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image.
๐ฅ Github: https://github.com/cvlab-columbia/zero123
๐ค Hugging face: https://huggingface.co/spaces/cvlab/zero123-live
โฉ Paper: https://arxiv.org/abs/2303.11328v1
โฉ Dataset: https://zero123.cs.columbia.edu/
๐จ Project: https://paperswithcode.com/dataset/beat
โญ๏ธ Demo: https://huggingface.co/spaces/cvlab/zero123
https://t.iss.one/DataScienceT
โค3โคโ๐ฅ3๐2๐1
MIT Introduction to Deep Learning - 2023 Starting soon! MIT Intro to DL is one of the most concise AI courses on the web that cover basic deep learning techniques, architectures, and applications.
2023 lectures are starting in just one day, Jan 9th!
Link to register:
https://introtodeeplearning.com
MIT Introduction to Deep Learning The 2022 lectures can be found here:
https://m.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
https://t.iss.one/DataScienceT
2023 lectures are starting in just one day, Jan 9th!
Link to register:
https://introtodeeplearning.com
MIT Introduction to Deep Learning The 2022 lectures can be found here:
https://m.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
https://t.iss.one/DataScienceT
โคโ๐ฅ3๐3๐2