Data Science | Machine Learning with Python for Researchers
31.3K subscribers
1.52K photos
102 videos
22 files
1.79K links
Admin: @HusseinSheikho

The Data Science and Python channel is for researchers and advanced programmers

Buy ads: https://telega.io/c/dataScienceT
Download Telegram
Pandas for Data Science
Learning Path โ‹… Skills: Pandas, Data Science, Data Visualization

https://realpython.com/learning-paths/pandas-data-science/

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ5
Openicl

New open-source toolkit for ICL and LLM evaluation.

pip install openicl

๐Ÿ–ฅ Github: https://github.com/shark-nlp/openicl

โฉ Paper: https://arxiv.org/abs/2303.02913

โญ๏ธ Dataset: https://paperswithcode.com/dataset/gsm8k

๐Ÿ’จ Docs: https://github.com/shark-nlp/openicl#docs

โฉ Examples: https://github.com/Shark-NLP/OpenICL/tree/main/examples

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ3โค2
An important collection of the 15 best machine learning cheat sheets.

ู…ุฌู…ูˆุนุฉ ู…ู‡ู…ุฉ ุงู„ุงูุถู„ ูกูฅ ูˆุฑู‚ุฉ ุบุด ููŠ ู…ุฌุงู„ ุงู„ุชุนู„ู… ุงู„ุขู„ูŠ.

1- Supervised Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf

2- Unsupervised Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf

3- Deep Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf

4- Machine Learning Tips and Tricks

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf

5- Probabilities and Statistics

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf

6- Comprehensive Stanford Master Cheat Sheet

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf

7- Linear Algebra and Calculus

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf

8- Data Science Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf

9- Keras Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf

10- Deep Learning with Keras Cheat Sheet

https://github.com/rstudio/cheatsheets/raw/master/keras.pdf

11- Visual Guide to Neural Network Infrastructures

https://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png

12- Skicit-Learn Python Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf

13- Scikit-learn Cheat Sheet: Choosing the Right Estimator

https://scikit-learn.org/stable/tutorial/machine_learning_map/

14- Tensorflow Cheat Sheet

https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf

15- Machine Learning Test Cheat Sheet

https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/

โœณ๏ธ ุณุงู‡ู… ุจู†ู…ูˆ ู…ุฌุชู…ุนู†ุง ู…ู† ุฎู„ุงู„ ุงุถุงูุฉ ุงู„ุงุตุฏู‚ุงุก ุงูˆ ู…ุดุงุฑูƒุฉ ุงู„ู…ู†ุดูˆุฑ.
๐Ÿ‘4โคโ€๐Ÿ”ฅ2
Datasets

Datasets collected for network science, deep learning and general machine learning research.

Github: https://github.com/benedekrozemberczki/datasets

Paper: https://arxiv.org/abs/2101.03091v1

Invite your friends ๐ŸŒน๐ŸŒน
@DataScience_Books
๐Ÿ‘4โคโ€๐Ÿ”ฅ3
Multivariate Probabilistic Time Series Forecasting with Informer

Efficient transformer-based model for LSTF.

Method introduces a Probabilistic Attention mechanism to select the โ€œactiveโ€ queries rather than the โ€œlazyโ€ queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention.

๐Ÿค—Hugging face:
https://huggingface.co/blog/informer

โฉ Paper:
https://huggingface.co/docs/transformers/main/en/model_doc/informer

โญ๏ธ Colab:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb

๐Ÿ’จ Dataset:
https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ2๐Ÿ‘1
Linear Algebra in Python: Matrix Inverses and Least Squares

https://realpython.com/python-linear-algebra/
โคโ€๐Ÿ”ฅ4๐Ÿ‘1
โคโ€๐Ÿ”ฅ4
Tuned Lens ๐Ÿ”Ž

Simple interface training and evaluating tuned lenses. A tuned lens allows us to peak at the iterative computations a transformer uses to compute the next token.

pip install tuned-lens

๐Ÿ–ฅ Github: https://github.com/alignmentresearch/tuned-lens

โฉ Paper: https://arxiv.org/abs/2303.08112v1

โญ๏ธ Dataset: https://paperswithcode.com/dataset/the-pile

๐Ÿ–ฅ Colab: https://colab.research.google.com/github/AlignmentResearch/tuned-lens/blob/main/notebooks/interactive.ipynb

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ6
OpenSeeD

A Simple Framework for Open-Vocabulary Segmentation and Detection

๐Ÿ–ฅ Github: https://github.com/idea-research/openseed

โฉ Paper: https://arxiv.org/abs/2303.08131v2

๐Ÿ’จ Dataset: https://paperswithcode.com/dataset/objects365

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ3
Contrastive Semi-supervised Learning for Underwater Image Restoration via Reliable Bank

๐Ÿ–ฅ Github: https://github.com/huang-shirui/semi-uir

โฉ Paper: https://arxiv.org/abs/2303.09101v1

๐Ÿ’จ Project: https://paperswithcode.com/dataset/uieb

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ2
This media is not supported in your browser
VIEW IN TELEGRAM
WebSHAP: Towards Explaining Any Machine Learning Models Anywhere

๐Ÿ–ฅ Github: https://github.com/poloclub/webshap

โฉ Paper: https://arxiv.org/abs/2303.09545v1

๐Ÿ’จ Project: https://poloclub.github.io/webshap

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ3๐Ÿ‘1
๐Ÿ–ฅ GigaGAN - Pytorch

Implementation of GigaGAN, new SOTA GAN out of Adobe.

https://github.com/lucidrains/gigagan-pytorch

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ2
Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation (CVPR 2023)

Novel Diffusion Audio-Gesture Transformer is devised to better attend to the information from multiple modalities and model the long-term temporal dependency.

๐Ÿ–ฅ Github: https://github.com/advocate99/diffgesture

โฉ Paper: https://arxiv.org/abs/2303.09119v1

๐Ÿ’จ Dataset: https://paperswithcode.com/dataset/beat

https://t.iss.one/DataScienceT
๐Ÿ‘3โคโ€๐Ÿ”ฅ2
Deep Metric Learning for Unsupervised CD

๐Ÿ–ฅ Github: https://github.com/wgcban/metric-cd

โฉ Paper: https://arxiv.org/abs/2303.09536v1

https://t.iss.one/DataScienceT
๐Ÿ‘2โคโ€๐Ÿ”ฅ1
This media is not supported in your browser
VIEW IN TELEGRAM
โšœ๏ธ ViperGPT: Visual Inference via Python Execution for Reasoning

ViperGPT, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query.

๐Ÿ–ฅ Github: https://github.com/cvlab-columbia/viper

โฉ Paper: https://arxiv.org/pdf/2303.08128.pdf

๐Ÿ’จ Project: https://paperswithcode.com/dataset/beat

https://t.iss.one/DataScienceT
๐Ÿ‘3๐Ÿ†2โคโ€๐Ÿ”ฅ1
๐ŸŽฅ Zero-1-to-3: Zero-shot One Image to 3D Object

Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image.

๐Ÿ–ฅ Github: https://github.com/cvlab-columbia/zero123

๐Ÿค— Hugging face: https://huggingface.co/spaces/cvlab/zero123-live

โฉ Paper: https://arxiv.org/abs/2303.11328v1

โฉ Dataset: https://zero123.cs.columbia.edu/

๐Ÿ’จ Project: https://paperswithcode.com/dataset/beat

โญ๏ธ Demo: https://huggingface.co/spaces/cvlab/zero123

https://t.iss.one/DataScienceT
โค3โคโ€๐Ÿ”ฅ3๐Ÿ†2๐Ÿ‘1
MIT Introduction to Deep Learning - 2023 Starting soon! MIT Intro to DL is one of the most concise AI courses on the web that cover basic deep learning techniques, architectures, and applications.

2023 lectures are starting in just one day, Jan 9th!

Link to register:
https://introtodeeplearning.com

MIT Introduction to Deep Learning The 2022 lectures can be found here:

https://m.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ3๐Ÿ‘3๐Ÿ†2