Data Science | Machine Learning with Python for Researchers
31.6K subscribers
1.72K photos
102 videos
22 files
1.99K links
Admin: @HusseinSheikho

The Data Science and Python channel is for researchers and advanced programmers

Buy ads: https://telega.io/c/dataScienceT
Download Telegram
Ultra fast ControlNet with ๐Ÿงจ Diffusers

ControlNet provides a minimal interface allowing users to customize the generation process up to a great extent.

๐Ÿค— Hugging face blog: https://huggingface.co/blog/controlnet

๐Ÿ–ฅ Colab: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb

๐Ÿ–ฅ Github: https://github.com/lllyasviel/ControlNet

โฉ Paprer: https://arxiv.org/abs/2302.05543

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ6โค1
โญ๏ธ SplineCam: Exact Visualization and Characterization of Deep Network Geometry and Decision Boundaries, CVPR 2023

Exact method for computing partitions of a Deep Neural Network

๐Ÿ–ฅ Github: https://github.com/AhmedImtiazPrio/SplineCAM

๐Ÿ–ฅ Colab: https://bit.ly/splinecam-demo

โฉ Paper: https://arxiv.org/pdf/2302.12828.pdf

โญ๏ธ Project: https://imtiazhumayun.github.io/splinecam

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ6
Preference Transformer: Modeling Human Preferences using Transformers for RL (ICLR 2023)

๐Ÿ–ฅ Github: https://github.com/csmile-1006/preferencetransformer

โฉ Paper: https://arxiv.org/abs/2303.00957v1

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ4โค2๐Ÿ‘1
Handwritten Digit Recognition with LeNet5 Model in PyTorch

by Adrian Tam on March 8, 2023 in Deep Learning with PyTorch

๐Ÿ”—: https://machinelearningmastery.com/handwritten-digit-recognition-with-lenet5-model-in-pytorch

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ5โค1
๐Ÿ’ฌ GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGENโ€™s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.

โญ๏ธ Project: https://gligen.github.io/

โญ๏ธ Demo: https://aka.ms/gligen

โœ…๏ธ Paper: https://arxiv.org/abs/2301.07093

๐Ÿ–ฅ Github: https://github.com/gligen/GLIGEN

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ4
Pandas for Data Science
Learning Path โ‹… Skills: Pandas, Data Science, Data Visualization

https://realpython.com/learning-paths/pandas-data-science/

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ5
Openicl

New open-source toolkit for ICL and LLM evaluation.

pip install openicl

๐Ÿ–ฅ Github: https://github.com/shark-nlp/openicl

โฉ Paper: https://arxiv.org/abs/2303.02913

โญ๏ธ Dataset: https://paperswithcode.com/dataset/gsm8k

๐Ÿ’จ Docs: https://github.com/shark-nlp/openicl#docs

โฉ Examples: https://github.com/Shark-NLP/OpenICL/tree/main/examples

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ3โค2
An important collection of the 15 best machine learning cheat sheets.

ู…ุฌู…ูˆุนุฉ ู…ู‡ู…ุฉ ุงู„ุงูุถู„ ูกูฅ ูˆุฑู‚ุฉ ุบุด ููŠ ู…ุฌุงู„ ุงู„ุชุนู„ู… ุงู„ุขู„ูŠ.

1- Supervised Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf

2- Unsupervised Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf

3- Deep Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf

4- Machine Learning Tips and Tricks

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf

5- Probabilities and Statistics

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf

6- Comprehensive Stanford Master Cheat Sheet

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf

7- Linear Algebra and Calculus

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf

8- Data Science Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf

9- Keras Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf

10- Deep Learning with Keras Cheat Sheet

https://github.com/rstudio/cheatsheets/raw/master/keras.pdf

11- Visual Guide to Neural Network Infrastructures

https://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png

12- Skicit-Learn Python Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf

13- Scikit-learn Cheat Sheet: Choosing the Right Estimator

https://scikit-learn.org/stable/tutorial/machine_learning_map/

14- Tensorflow Cheat Sheet

https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf

15- Machine Learning Test Cheat Sheet

https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/

โœณ๏ธ ุณุงู‡ู… ุจู†ู…ูˆ ู…ุฌุชู…ุนู†ุง ู…ู† ุฎู„ุงู„ ุงุถุงูุฉ ุงู„ุงุตุฏู‚ุงุก ุงูˆ ู…ุดุงุฑูƒุฉ ุงู„ู…ู†ุดูˆุฑ.
๐Ÿ‘4โคโ€๐Ÿ”ฅ2
Datasets

Datasets collected for network science, deep learning and general machine learning research.

Github: https://github.com/benedekrozemberczki/datasets

Paper: https://arxiv.org/abs/2101.03091v1

Invite your friends ๐ŸŒน๐ŸŒน
@DataScience_Books
๐Ÿ‘4โคโ€๐Ÿ”ฅ3
Multivariate Probabilistic Time Series Forecasting with Informer

Efficient transformer-based model for LSTF.

Method introduces a Probabilistic Attention mechanism to select the โ€œactiveโ€ queries rather than the โ€œlazyโ€ queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention.

๐Ÿค—Hugging face:
https://huggingface.co/blog/informer

โฉ Paper:
https://huggingface.co/docs/transformers/main/en/model_doc/informer

โญ๏ธ Colab:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb

๐Ÿ’จ Dataset:
https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ2๐Ÿ‘1
Linear Algebra in Python: Matrix Inverses and Least Squares

https://realpython.com/python-linear-algebra/
โคโ€๐Ÿ”ฅ4๐Ÿ‘1
โคโ€๐Ÿ”ฅ4
Tuned Lens ๐Ÿ”Ž

Simple interface training and evaluating tuned lenses. A tuned lens allows us to peak at the iterative computations a transformer uses to compute the next token.

pip install tuned-lens

๐Ÿ–ฅ Github: https://github.com/alignmentresearch/tuned-lens

โฉ Paper: https://arxiv.org/abs/2303.08112v1

โญ๏ธ Dataset: https://paperswithcode.com/dataset/the-pile

๐Ÿ–ฅ Colab: https://colab.research.google.com/github/AlignmentResearch/tuned-lens/blob/main/notebooks/interactive.ipynb

https://t.iss.one/DataScienceT
โคโ€๐Ÿ”ฅ6