Python Data Science Jobs & Interviews
20.3K subscribers
187 photos
4 videos
25 files
325 links
Your go-to hub for Python and Data Science—featuring questions, answers, quizzes, and interview tips to sharpen your skills and boost your career in the data-driven world.

Admin: @Hussein_Sheikho
Download Telegram
How can you implement a hybrid AI-driven recommendation system in Python that combines collaborative filtering, content-based filtering, and real-time user behavior analysis using machine learning models (e.g., LightFM, scikit-learn) with a scalable backend powered by Redis and FastAPI to deliver personalized recommendations in real time? Provide a concise code example demonstrating advanced features such as incremental model updates, cold-start handling, A/B testing, and low-latency response generation.

import redis
import numpy as np
from fastapi import FastAPI, Depends
from typing import Dict, List, Any
from lightfm import LightFM
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import json
import asyncio

# Configuration
REDIS_URL = "redis://localhost:6379/0"
app = FastAPI()
redis_client = redis.from_url(REDIS_URL)

class HybridRecommendationSystem:
def __init__(self):
self.model = LightFM(no_components=30, loss='warp')
self.user_features = {}
self.item_features = {}
self.tfidf = TfidfVectorizer(max_features=1000)

async def update_model(self, interactions: List[Dict], items: List[Dict]):
"""Incrementally update recommendation model."""
# Simulate training data
n_users = len(interactions)
n_items = len(items)
user_ids = [i['user_id'] for i in interactions]
item_ids = [i['item_id'] for i in interactions]
ratings = [i['rating'] for i in interactions]

# Create sparse interaction matrix
X = np.zeros((n_users, n_items))
for u, i, r in zip(user_ids, item_ids, ratings):
X[u, i] = r

# Update model
self.model.fit_partial(X)

async def get_recommendations(self, user_id: int, n: int = 5) -> List[int]:
"""Generate recommendations using hybrid approach."""
# Collaborative filtering
scores_cf = self.model.predict(user_id, np.arange(1000))

# Content-based filtering
if user_id in self.user_features:
user_vec = np.array([self.user_features[user_id]])
item_vecs = np.array(list(self.item_features.values()))
scores_cb = cosine_similarity(user_vec, item_vecs)[0]

# Combine scores
combined_scores = (scores_cf + scores_cb) / 2
else:
combined_scores = scores_cf

# Return top-N recommendations
return np.argsort(combined_scores)[-n:][::-1].tolist()

async def handle_cold_start(self, user_id: int, preferences: List[str]):
"""Handle new users with content-based recommendations."""
# Extract features from user preferences
tfidf_matrix = self.tfidf.fit_transform(preferences)
user_features = tfidf_matrix.mean(axis=0).tolist()[0]
self.user_features[user_id] = user_features

# Get similar items
return self.get_recommendations(user_id, n=10)

@app.post("/recommend")
async def recommend(user_id: int, preferences: List[str] = None):
system = HybridRecommendationSystem()

# Handle cold start
if not preferences:
recommendations = await system.get_recommendations(user_id)
else:
recommendations = await system.handle_cold_start(user_id, preferences)

# Store in Redis for caching
redis_client.set(f"rec:{user_id}", json.dumps(recommendations))
return {"recommendations": recommendations}

# Example usage
asyncio.run(HybridRecommendationSystem().update_model(
[{"user_id": 0, "item_id": 1, "rating": 4}],
[{"item_id": 1, "title": "Movie A", "genre": "action"}]
))


#AI #MachineLearning #RecommendationSystems #HybridApproach #LightFM #RealTimeAI #ColdStartHandling #AandBTesting #ScalableBackend #FastAPI #Redis #Personalization

By: @DataScienceQ 🚀
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤‍🔥1