๐ฅ Trending Repository: free-llm-api-resources
๐ Description: A list of free LLM inference resources accessible via API.
๐ Repository URL: https://github.com/cheahjs/free-llm-api-resources
๐ Readme: https://github.com/cheahjs/free-llm-api-resources#readme
๐ Statistics:
๐ Stars: 8.5K stars
๐ Watchers: 138
๐ด Forks: 840 forks
๐ป Programming Languages: Python
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: A list of free LLM inference resources accessible via API.
๐ Repository URL: https://github.com/cheahjs/free-llm-api-resources
๐ Readme: https://github.com/cheahjs/free-llm-api-resources#readme
๐ Statistics:
๐ Stars: 8.5K stars
๐ Watchers: 138
๐ด Forks: 840 forks
๐ป Programming Languages: Python
๐ท๏ธ Related Topics:
#ai #gemini #openai #llama #claude #llm
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: claude-skills
๐ Description: 65 Specialized Skills for Full-Stack Developers. Transform Claude Code into your expert pair programmer.
๐ Repository URL: https://github.com/Jeffallan/claude-skills
๐ Readme: https://github.com/Jeffallan/claude-skills#readme
๐ Statistics:
๐ Stars: 498 stars
๐ Watchers: 6
๐ด Forks: 56 forks
๐ป Programming Languages: Python - JavaScript - HTML - Astro - Shell - Makefile
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: 65 Specialized Skills for Full-Stack Developers. Transform Claude Code into your expert pair programmer.
๐ Repository URL: https://github.com/Jeffallan/claude-skills
๐ Readme: https://github.com/Jeffallan/claude-skills#readme
๐ Statistics:
๐ Stars: 498 stars
๐ Watchers: 6
๐ด Forks: 56 forks
๐ป Programming Languages: Python - JavaScript - HTML - Astro - Shell - Makefile
๐ท๏ธ Related Topics:
#ai_agents #claude #claude_code #claude_skills #claude_marketplace
==================================
๐ง By: https://t.iss.one/DataScienceM
โค1
๐น DATA SCIENCE โ INTERVIEW REVISION SHEET*
*1๏ธโฃ What is Data Science?*
> โData science is the process of using data, statistics, and machine learning to extract insights and build predictive or decision-making models.โ
Difference from Data Analytics:
- Data Analytics โ past & present (what/why)
- Data Science โ future & automation (what will happen)
*2๏ธโฃ Data Science Lifecycle (Very Important)*
1. Business problem understanding
2. Data collection
3. Data cleaning & preprocessing
4. Exploratory Data Analysis (EDA)
5. Feature engineering
6. Model building
7. Model evaluation
8. Deployment & monitoring
Interview line:
> โI always start from business understanding, not the model.โ
*3๏ธโฃ Data Types*
- Structured โ tables, SQL
- Semi-structured โ JSON, logs
- Unstructured โ text, images
*4๏ธโฃ Statistics You MUST Know*
- Central tendency: Mean, Median (use when outliers exist)
- Spread: Variance, Standard deviation
- Correlation โ causation
- Normal distribution
- Skewness (income โ right skewed)
*5๏ธโฃ Data Cleaning & Preprocessing*
Steps you should say in interviews:
1. Handle missing values
2. Remove duplicates
3. Treat outliers
4. Encode categorical variables
5. Scale numerical data
Scaling:
- Min-Max โ bounded range
- Standardization โ normal distribution
*6๏ธโฃ Feature Engineering (Interview Favorite)*
> โFeature engineering is creating meaningful input variables that improve model performance.โ
Examples:
- Extract month from date
- Create customer lifetime value
- Binning age groups
*7๏ธโฃ Machine Learning Basics*
- Supervised learning: Regression, Classification
- Unsupervised learning: Clustering, Dimensionality reduction
*8๏ธโฃ Common Algorithms (Know WHEN to use)*
- Regression: Linear regression โ continuous output
- Classification: Logistic regression, Decision tree, Random forest, SVM
- Unsupervised: K-Means โ segmentation, PCA โ dimensionality reduction
*9๏ธโฃ Overfitting vs Underfitting*
- Overfitting โ model memorizes training data
- Underfitting โ model too simple
Fixes:
- Regularization
- More data
- Cross-validation
*๐ Model Evaluation Metrics*
- Classification: Accuracy, Precision, Recall, F1 score, ROC-AUC
- Regression: MAE, RMSE
Interview line:
> โMetric selection depends on business problem.โ
*1๏ธโฃ1๏ธโฃ Imbalanced Data Techniques*
- Class weighting
- Oversampling / undersampling
- SMOTE
- Metric preference: Precision, Recall, F1, ROC-AUC
*1๏ธโฃ2๏ธโฃ Python for Data Science*
Core libraries:
- NumPy
- Pandas
- Matplotlib / Seaborn
- Scikit-learn
Must know:
- loc vs iloc
- Groupby
- Vectorization
*1๏ธโฃ3๏ธโฃ Model Deployment (Basic Understanding)*
- Batch prediction
- Real-time prediction
- Model monitoring
- Model drift
Interview line:
> โModels must be monitored because data changes over time.โ
*1๏ธโฃ4๏ธโฃ Explain Your Project (Template)*
> โThe goal was _. I cleaned the data using _. I performed EDA to identify _. I built _ model and evaluated using _. The final outcome was _.โ
*1๏ธโฃ5๏ธโฃ HR-Style Data Science Answers*
Why data science?
> โI enjoy solving complex problems using data and building models that automate decisions.โ
Biggest challenge:
โHandling messy real-world data.โ
Strength:
โStrong foundation in statistics and ML.โ
*๐ฅ LAST-DAY INTERVIEW TIPS*
- Explain intuition, not math
- Donโt jump to algorithms immediately
- Always connect model โ business value
- Say assumptions clearly
*1๏ธโฃ What is Data Science?*
> โData science is the process of using data, statistics, and machine learning to extract insights and build predictive or decision-making models.โ
Difference from Data Analytics:
- Data Analytics โ past & present (what/why)
- Data Science โ future & automation (what will happen)
*2๏ธโฃ Data Science Lifecycle (Very Important)*
1. Business problem understanding
2. Data collection
3. Data cleaning & preprocessing
4. Exploratory Data Analysis (EDA)
5. Feature engineering
6. Model building
7. Model evaluation
8. Deployment & monitoring
Interview line:
> โI always start from business understanding, not the model.โ
*3๏ธโฃ Data Types*
- Structured โ tables, SQL
- Semi-structured โ JSON, logs
- Unstructured โ text, images
*4๏ธโฃ Statistics You MUST Know*
- Central tendency: Mean, Median (use when outliers exist)
- Spread: Variance, Standard deviation
- Correlation โ causation
- Normal distribution
- Skewness (income โ right skewed)
*5๏ธโฃ Data Cleaning & Preprocessing*
Steps you should say in interviews:
1. Handle missing values
2. Remove duplicates
3. Treat outliers
4. Encode categorical variables
5. Scale numerical data
Scaling:
- Min-Max โ bounded range
- Standardization โ normal distribution
*6๏ธโฃ Feature Engineering (Interview Favorite)*
> โFeature engineering is creating meaningful input variables that improve model performance.โ
Examples:
- Extract month from date
- Create customer lifetime value
- Binning age groups
*7๏ธโฃ Machine Learning Basics*
- Supervised learning: Regression, Classification
- Unsupervised learning: Clustering, Dimensionality reduction
*8๏ธโฃ Common Algorithms (Know WHEN to use)*
- Regression: Linear regression โ continuous output
- Classification: Logistic regression, Decision tree, Random forest, SVM
- Unsupervised: K-Means โ segmentation, PCA โ dimensionality reduction
*9๏ธโฃ Overfitting vs Underfitting*
- Overfitting โ model memorizes training data
- Underfitting โ model too simple
Fixes:
- Regularization
- More data
- Cross-validation
*๐ Model Evaluation Metrics*
- Classification: Accuracy, Precision, Recall, F1 score, ROC-AUC
- Regression: MAE, RMSE
Interview line:
> โMetric selection depends on business problem.โ
*1๏ธโฃ1๏ธโฃ Imbalanced Data Techniques*
- Class weighting
- Oversampling / undersampling
- SMOTE
- Metric preference: Precision, Recall, F1, ROC-AUC
*1๏ธโฃ2๏ธโฃ Python for Data Science*
Core libraries:
- NumPy
- Pandas
- Matplotlib / Seaborn
- Scikit-learn
Must know:
- loc vs iloc
- Groupby
- Vectorization
*1๏ธโฃ3๏ธโฃ Model Deployment (Basic Understanding)*
- Batch prediction
- Real-time prediction
- Model monitoring
- Model drift
Interview line:
> โModels must be monitored because data changes over time.โ
*1๏ธโฃ4๏ธโฃ Explain Your Project (Template)*
> โThe goal was _. I cleaned the data using _. I performed EDA to identify _. I built _ model and evaluated using _. The final outcome was _.โ
*1๏ธโฃ5๏ธโฃ HR-Style Data Science Answers*
Why data science?
> โI enjoy solving complex problems using data and building models that automate decisions.โ
Biggest challenge:
โHandling messy real-world data.โ
Strength:
โStrong foundation in statistics and ML.โ
*๐ฅ LAST-DAY INTERVIEW TIPS*
- Explain intuition, not math
- Donโt jump to algorithms immediately
- Always connect model โ business value
- Say assumptions clearly
โค4
๐ฅ Trending Repository: Personal_AI_Infrastructure
๐ Description: Agentic AI Infrastructure for magnifying HUMAN capabilities.
๐ Repository URL: https://github.com/danielmiessler/Personal_AI_Infrastructure
๐ Readme: https://github.com/danielmiessler/Personal_AI_Infrastructure#readme
๐ Statistics:
๐ Stars: 7.2K stars
๐ Watchers: 120
๐ด Forks: 1.1K forks
๐ป Programming Languages: TypeScript - Vue - Python - Shell - CSS - Handlebars
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Agentic AI Infrastructure for magnifying HUMAN capabilities.
๐ Repository URL: https://github.com/danielmiessler/Personal_AI_Infrastructure
๐ Readme: https://github.com/danielmiessler/Personal_AI_Infrastructure#readme
๐ Statistics:
๐ Stars: 7.2K stars
๐ Watchers: 120
๐ด Forks: 1.1K forks
๐ป Programming Languages: TypeScript - Vue - Python - Shell - CSS - Handlebars
๐ท๏ธ Related Topics:
#productivity #ai #humans #augmentation
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: rowboat
๐ Description: Open-source AI coworker, with memory
๐ Repository URL: https://github.com/rowboatlabs/rowboat
๐ Website: https://www.rowboatlabs.com
๐ Readme: https://github.com/rowboatlabs/rowboat#readme
๐ Statistics:
๐ Stars: 4.9K stars
๐ Watchers: 38
๐ด Forks: 388 forks
๐ป Programming Languages: TypeScript - CSS - MDX - Python - JavaScript - Dockerfile
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Open-source AI coworker, with memory
๐ Repository URL: https://github.com/rowboatlabs/rowboat
๐ Website: https://www.rowboatlabs.com
๐ Readme: https://github.com/rowboatlabs/rowboat#readme
๐ Statistics:
๐ Stars: 4.9K stars
๐ Watchers: 38
๐ด Forks: 388 forks
๐ป Programming Languages: TypeScript - CSS - MDX - Python - JavaScript - Dockerfile
๐ท๏ธ Related Topics:
#productivity #open_source #ai #orchestration #multiagent #agents #ai_agents #llm #generative_ai #chatgpt #opeani #ai_agents_automation #claude_code #agents_sdk #claude_cowork
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: cinny
๐ Description: Yet another matrix client
๐ Repository URL: https://github.com/cinnyapp/cinny
๐ Website: https://cinny.in
๐ Readme: https://github.com/cinnyapp/cinny#readme
๐ Statistics:
๐ Stars: 2.8K stars
๐ Watchers: 19
๐ด Forks: 385 forks
๐ป Programming Languages: TypeScript
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Yet another matrix client
๐ Repository URL: https://github.com/cinnyapp/cinny
๐ Website: https://cinny.in
๐ Readme: https://github.com/cinnyapp/cinny#readme
๐ Statistics:
๐ Stars: 2.8K stars
๐ Watchers: 19
๐ด Forks: 385 forks
๐ป Programming Languages: TypeScript
๐ท๏ธ Related Topics:
#client #reactjs #matrix #hacktoberfest #matrix_client #matrix_org #cinny #cinnyapp
==================================
๐ง By: https://t.iss.one/DataScienceM
The biggest surprise for our valued audience: we are offering 40 paid courses completely free.
Enroll Here and request
https://adsly.me/l/jwxfnss0yi
We use a spam/flood protection system to ensure that all registered users are real people.
Enroll Here and request
https://adsly.me/l/jwxfnss0yi
We use a spam/flood protection system to ensure that all registered users are real people.
๐ฅ Trending Repository: aios-core
๐ Description: Synkra AIOS: AI-Orchestrated System for Full Stack Development - Core Framework v4.0
๐ Repository URL: https://github.com/SynkraAI/aios-core
๐ Website: https://github.com/allfluence/aios-core
๐ Readme: https://github.com/SynkraAI/aios-core#readme
๐ Statistics:
๐ Stars: 291 stars
๐ Watchers: 29
๐ด Forks: 171 forks
๐ป Programming Languages: JavaScript - Python - Shell - Handlebars - PLpgSQL - CSS
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Synkra AIOS: AI-Orchestrated System for Full Stack Development - Core Framework v4.0
๐ Repository URL: https://github.com/SynkraAI/aios-core
๐ Website: https://github.com/allfluence/aios-core
๐ Readme: https://github.com/SynkraAI/aios-core#readme
๐ Statistics:
๐ Stars: 291 stars
๐ Watchers: 29
๐ด Forks: 171 forks
๐ป Programming Languages: JavaScript - Python - Shell - Handlebars - PLpgSQL - CSS
๐ท๏ธ Related Topics:
#nodejs #cli #development #automation #framework #typescript #ai #orchestration #fullstack #agents #ai_agents #claude
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: MTProxy
๐ Description: No description available
๐ Repository URL: https://github.com/TelegramMessenger/MTProxy
๐ Readme: https://github.com/TelegramMessenger/MTProxy#readme
๐ Statistics:
๐ Stars: 5.8K stars
๐ Watchers: 233
๐ด Forks: 994 forks
๐ป Programming Languages: C - Makefile
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: No description available
๐ Repository URL: https://github.com/TelegramMessenger/MTProxy
๐ Readme: https://github.com/TelegramMessenger/MTProxy#readme
๐ Statistics:
๐ Stars: 5.8K stars
๐ Watchers: 233
๐ด Forks: 994 forks
๐ป Programming Languages: C - Makefile
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: superhuman
๐ Description: No description available
๐ Repository URL: https://github.com/google-deepmind/superhuman
๐ Readme: https://github.com/google-deepmind/superhuman#readme
๐ Statistics:
๐ Stars: 268 stars
๐ Watchers: 14
๐ด Forks: 21 forks
๐ป Programming Languages: TeX
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: No description available
๐ Repository URL: https://github.com/google-deepmind/superhuman
๐ Readme: https://github.com/google-deepmind/superhuman#readme
๐ Statistics:
๐ Stars: 268 stars
๐ Watchers: 14
๐ด Forks: 21 forks
๐ป Programming Languages: TeX
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
โค1
๐ฅ Trending Repository: slime
๐ Description: slime is an LLM post-training framework for RL Scaling.
๐ Repository URL: https://github.com/THUDM/slime
๐ Website: https://thudm.github.io/slime
๐ Readme: https://github.com/THUDM/slime#readme
๐ Statistics:
๐ Stars: 4K stars
๐ Watchers: 16
๐ด Forks: 523 forks
๐ป Programming Languages: Python - Shell
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: slime is an LLM post-training framework for RL Scaling.
๐ Repository URL: https://github.com/THUDM/slime
๐ Website: https://thudm.github.io/slime
๐ Readme: https://github.com/THUDM/slime#readme
๐ Statistics:
๐ Stars: 4K stars
๐ Watchers: 16
๐ด Forks: 523 forks
๐ป Programming Languages: Python - Shell
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
โค2
๐ฅ Trending Repository: DebugSwift
๐ Description: A toolkit to make debugging iOS applications easier ๐
๐ Repository URL: https://github.com/DebugSwift/DebugSwift
๐ Readme: https://github.com/DebugSwift/DebugSwift#readme
๐ Statistics:
๐ Stars: 1.3K stars
๐ Watchers: 7
๐ด Forks: 118 forks
๐ป Programming Languages: Swift
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: A toolkit to make debugging iOS applications easier ๐
๐ Repository URL: https://github.com/DebugSwift/DebugSwift
๐ Readme: https://github.com/DebugSwift/DebugSwift#readme
๐ Statistics:
๐ Stars: 1.3K stars
๐ Watchers: 7
๐ด Forks: 118 forks
๐ป Programming Languages: Swift
๐ท๏ธ Related Topics:
#debugger #swift #debugging #ui #networking #log #analytics #analysis #view #cocoapods #sandbox #uikit #debug #performance_analysis #crashlytics #hacktoberfest #leak_detection #logs_analysis #layout_debugger #swift6
==================================
๐ง By: https://t.iss.one/DataScienceM
โค3
SQL ๐ข๐ฟ๐ฑ๐ฒ๐ฟ ๐ข๐ณ ๐๐
๐ฒ๐ฐ๐๐๐ถ๐ผ๐ป
1 โ FROM (Tables selected).
2 โ WHERE (Filters applied).
3 โ GROUP BY (Rows grouped).
4 โ HAVING (Filter on grouped data).
5 โ SELECT (Columns selected).
6 โ ORDER BY (Sort the data).
7 โ LIMIT (Restrict number of rows).
๐๐ผ๐บ๐บ๐ผ๐ป ๐ค๐๐ฒ๐ฟ๐ถ๐ฒ๐ ๐ง๐ผ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ โ
โฌ Find the second-highest salary:
SELECT MAX(Salary) FROM Employees WHERE Salary < (SELECT MAX(Salary) FROM Employees);
โฌ Find duplicate records:
SELECT Name, COUNT(*)
FROM Emp
GROUP BY Name
HAVING COUNT(*) > 1;
https://t.iss.one/DataScienceM
1 โ FROM (Tables selected).
2 โ WHERE (Filters applied).
3 โ GROUP BY (Rows grouped).
4 โ HAVING (Filter on grouped data).
5 โ SELECT (Columns selected).
6 โ ORDER BY (Sort the data).
7 โ LIMIT (Restrict number of rows).
๐๐ผ๐บ๐บ๐ผ๐ป ๐ค๐๐ฒ๐ฟ๐ถ๐ฒ๐ ๐ง๐ผ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ โ
โฌ Find the second-highest salary:
SELECT MAX(Salary) FROM Employees WHERE Salary < (SELECT MAX(Salary) FROM Employees);
โฌ Find duplicate records:
SELECT Name, COUNT(*)
FROM Emp
GROUP BY Name
HAVING COUNT(*) > 1;
https://t.iss.one/DataScienceM
โค1๐ฅ1
๐ฅ Trending Repository: zvec
๐ Description: A lightweight, lightning-fast, in-process vector database
๐ Repository URL: https://github.com/alibaba/zvec
๐ Website: https://zvec.org/en/
๐ Readme: https://github.com/alibaba/zvec#readme
๐ Statistics:
๐ Stars: 967 stars
๐ Watchers: 4
๐ด Forks: 56 forks
๐ป Programming Languages: C++ - SWIG - Python - C - CMake - ANTLR
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: A lightweight, lightning-fast, in-process vector database
๐ Repository URL: https://github.com/alibaba/zvec
๐ Website: https://zvec.org/en/
๐ Readme: https://github.com/alibaba/zvec#readme
๐ Statistics:
๐ Stars: 967 stars
๐ Watchers: 4
๐ด Forks: 56 forks
๐ป Programming Languages: C++ - SWIG - Python - C - CMake - ANTLR
๐ท๏ธ Related Topics:
#embedded_database #rag #vector_search #ann_search #vectordb
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: wifi-densepose
๐ Description: Production-ready implementation of InvisPose - a revolutionary WiFi-based dense human pose estimation system that enables real-time full-body tracking through walls using commodity mesh routers
๐ Repository URL: https://github.com/ruvnet/wifi-densepose
๐ Readme: https://github.com/ruvnet/wifi-densepose#readme
๐ Statistics:
๐ Stars: 6K stars
๐ Watchers: 39
๐ด Forks: 544 forks
๐ป Programming Languages: Python - Rust - JavaScript - Shell - HTML - CSS
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Production-ready implementation of InvisPose - a revolutionary WiFi-based dense human pose estimation system that enables real-time full-body tracking through walls using commodity mesh routers
๐ Repository URL: https://github.com/ruvnet/wifi-densepose
๐ Readme: https://github.com/ruvnet/wifi-densepose#readme
๐ Statistics:
๐ Stars: 6K stars
๐ Watchers: 39
๐ด Forks: 544 forks
๐ป Programming Languages: Python - Rust - JavaScript - Shell - HTML - CSS
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: unstract
๐ Description: No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents
๐ Repository URL: https://github.com/Zipstack/unstract
๐ Website: https://unstract.com
๐ Readme: https://github.com/Zipstack/unstract#readme
๐ Statistics:
๐ Stars: 6.2K stars
๐ Watchers: 46
๐ด Forks: 588 forks
๐ป Programming Languages: Python - JavaScript - Shell - CSS
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents
๐ Repository URL: https://github.com/Zipstack/unstract
๐ Website: https://unstract.com
๐ Readme: https://github.com/Zipstack/unstract#readme
๐ Statistics:
๐ Stars: 6.2K stars
๐ Watchers: 46
๐ด Forks: 588 forks
๐ป Programming Languages: Python - JavaScript - Shell - CSS
๐ท๏ธ Related Topics:
#unstructured_data #etl_pipeline #llm_platform
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: letta-code
๐ Description: The memory-first coding agent
๐ Repository URL: https://github.com/letta-ai/letta-code
๐ Website: https://docs.letta.com/letta-code
๐ Readme: https://github.com/letta-ai/letta-code#readme
๐ Statistics:
๐ Stars: 1.1K stars
๐ Watchers: 7
๐ด Forks: 133 forks
๐ป Programming Languages: TypeScript
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: The memory-first coding agent
๐ Repository URL: https://github.com/letta-ai/letta-code
๐ Website: https://docs.letta.com/letta-code
๐ Readme: https://github.com/letta-ai/letta-code#readme
๐ Statistics:
๐ Stars: 1.1K stars
๐ Watchers: 7
๐ด Forks: 133 forks
๐ป Programming Languages: TypeScript
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: ruby
๐ Description: The Ruby Programming Language
๐ Repository URL: https://github.com/ruby/ruby
๐ Website: https://www.ruby-lang.org/
๐ Readme: https://github.com/ruby/ruby#readme
๐ Statistics:
๐ Stars: 23.3K stars
๐ Watchers: 1.1k
๐ด Forks: 5.6K forks
๐ป Programming Languages: Ruby - C - Rust - C++ - Yacc - HTML
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: The Ruby Programming Language
๐ Repository URL: https://github.com/ruby/ruby
๐ Website: https://www.ruby-lang.org/
๐ Readme: https://github.com/ruby/ruby#readme
๐ Statistics:
๐ Stars: 23.3K stars
๐ Watchers: 1.1k
๐ด Forks: 5.6K forks
๐ป Programming Languages: Ruby - C - Rust - C++ - Yacc - HTML
๐ท๏ธ Related Topics:
#ruby #c #language #programming_language #rust #jit #object_oriented #ruby_language
==================================
๐ง By: https://t.iss.one/DataScienceM
โค1
๐ฅ Trending Repository: gogcli
๐ Description: Google Suite CLI: Gmail, GCal, GDrive, GContacts.
๐ Repository URL: https://github.com/steipete/gogcli
๐ Website: https://gogcli.sh
๐ Readme: https://github.com/steipete/gogcli#readme
๐ Statistics:
๐ Stars: 2.7K stars
๐ Watchers: 19
๐ด Forks: 242 forks
๐ป Programming Languages: Go - HTML - Shell
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Google Suite CLI: Gmail, GCal, GDrive, GContacts.
๐ Repository URL: https://github.com/steipete/gogcli
๐ Website: https://gogcli.sh
๐ Readme: https://github.com/steipete/gogcli#readme
๐ Statistics:
๐ Stars: 2.7K stars
๐ Watchers: 19
๐ด Forks: 242 forks
๐ป Programming Languages: Go - HTML - Shell
๐ท๏ธ Related Topics:
#google #gmail #gdrive #gcal #gcontacts
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: moonshine
๐ Description: Fast and accurate automatic speech recognition (ASR) for edge devices
๐ Repository URL: https://github.com/moonshine-ai/moonshine
๐ Readme: https://github.com/moonshine-ai/moonshine#readme
๐ Statistics:
๐ Stars: 3.6K stars
๐ Watchers: 43
๐ด Forks: 175 forks
๐ป Programming Languages: C - C++ - Python - Swift - Java - Jupyter Notebook
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Fast and accurate automatic speech recognition (ASR) for edge devices
๐ Repository URL: https://github.com/moonshine-ai/moonshine
๐ Readme: https://github.com/moonshine-ai/moonshine#readme
๐ Statistics:
๐ Stars: 3.6K stars
๐ Watchers: 43
๐ด Forks: 175 forks
๐ป Programming Languages: C - C++ - Python - Swift - Java - Jupyter Notebook
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: brave-browser
๐ Description: Brave browser for Android, iOS, Linux, macOS, Windows.
๐ Repository URL: https://github.com/brave/brave-browser
๐ Website: https://brave.com
๐ Readme: https://github.com/brave/brave-browser#readme
๐ Statistics:
๐ Stars: 21.5K stars
๐ Watchers: 388
๐ด Forks: 3K forks
๐ป Programming Languages: Not available
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Brave browser for Android, iOS, Linux, macOS, Windows.
๐ Repository URL: https://github.com/brave/brave-browser
๐ Website: https://brave.com
๐ Readme: https://github.com/brave/brave-browser#readme
๐ Statistics:
๐ Stars: 21.5K stars
๐ Watchers: 388
๐ด Forks: 3K forks
๐ป Programming Languages: Not available
๐ท๏ธ Related Topics:
#windows #macos #linux #browser #chromium #brave
==================================
๐ง By: https://t.iss.one/DataScienceM
โค1