Data Science Jupyter Notebooks
12.5K subscribers
314 photos
49 videos
9 files
1.06K links
Explore the world of Data Science through Jupyter Notebooksโ€”insights, tutorials, and tools to boost your data journey. Code, analyze, and visualize smarter with every post.
Download Telegram
๐Ÿ”ฅ Trending Repository: data-engineer-handbook

๐Ÿ“ Description: This is a repo with links to everything you'd ever want to learn about data engineering

๐Ÿ”— Repository URL: https://github.com/DataExpert-io/data-engineer-handbook

๐Ÿ“– Readme: https://github.com/DataExpert-io/data-engineer-handbook#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 39.7K stars
๐Ÿ‘€ Watchers: 466
๐Ÿด Forks: 7.6K forks

๐Ÿ’ป Programming Languages: Jupyter Notebook - Python - Makefile - Dockerfile - Shell

๐Ÿท๏ธ Related Topics:
#data #awesome #sql #bigdata #dataengineering #apachespark


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
Data Science Interview Prep Guide

1๏ธโƒฃ Core Data Science Concepts
โ€ข What is Data Science vs Data Analytics vs ML
โ€ข Descriptive, diagnostic, predictive, prescriptive analytics
โ€ข Structured vs unstructured data
โ€ข Data-driven decision making
โ€ข Business problem framing

2๏ธโƒฃ Statistics  Probability (Non-Negotiable)
โ€ข Mean, median, variance, standard deviation
โ€ข Probability distributions (normal, binomial, Poisson)
โ€ข Hypothesis testing  p-values
โ€ข Confidence intervals
โ€ข Correlation vs causation
โ€ข Sampling  bias

3๏ธโƒฃ Data Cleaning  EDA
โ€ข Handling missing values  outliers
โ€ข Data normalization  scaling
โ€ข Feature engineering
โ€ข Exploratory data analysis (EDA)
โ€ข Data leakage detection
โ€ข Data quality validation

4๏ธโƒฃ Python  SQL for Data Science
โ€ข Python (NumPy, Pandas)
โ€ข Data manipulation  transformations
โ€ข Vectorization  performance optimization
โ€ข SQL joins, CTEs, window functions
โ€ข Writing business-ready queries

5๏ธโƒฃ Machine Learning Essentials
โ€ข Supervised vs unsupervised learning
โ€ข Regression vs classification
โ€ข Model selection  baseline models
โ€ข Overfitting, underfitting
โ€ข Biasโ€“variance tradeoff
โ€ข Hyperparameter tuning

6๏ธโƒฃ Model Evaluation  Metrics
โ€ข Accuracy, precision, recall, F1
โ€ข ROC  AUC
โ€ข Confusion matrix
โ€ข RMSE, MAE, log loss
โ€ข Metrics for imbalanced data
โ€ข Linking ML metrics to business KPIs

7๏ธโƒฃ Real-World  Deployment Knowledge
โ€ข Feature stores
โ€ข Model deployment (batch vs real-time)
โ€ข Model monitoring  drift
โ€ข Experiment tracking
โ€ข Data  model versioning
โ€ข Model explainability (business-friendly)

8๏ธโƒฃ Must-Have Projects
โ€ข Customer churn prediction
โ€ข Fraud detection
โ€ข Sales or demand forecasting
โ€ข Recommendation system
โ€ข End-to-end ML pipeline
โ€ข Business-focused case study

9๏ธโƒฃ Common Interview Questions
โ€ข Walk me through an end-to-end DS project
โ€ข How do you choose evaluation metrics?
โ€ข How do you handle imbalanced data?
โ€ข How do you explain a model to leadership?
โ€ข How do you improve a failing model?

๐Ÿ”Ÿ Pro Tips
โœ”๏ธ Always connect answers to business impact 
โœ”๏ธ Explain why, not just how 
โœ”๏ธ Be clear about trade-offs 
โœ”๏ธ Discuss failures  learnings 
โœ”๏ธ Show structured thinking 

https://t.iss.one/DataScienceN
โค5
๐Ÿ”ฅ Trending Repository: shannon

๐Ÿ“ Description: Fully autonomous AI hacker to find actual exploits in your web apps. Shannon has achieved a 96.15% success rate on the hint-free, source-aware XBOW Benchmark.

๐Ÿ”— Repository URL: https://github.com/KeygraphHQ/shannon

๐ŸŒ Website: https://keygraph.io/

๐Ÿ“– Readme: https://github.com/KeygraphHQ/shannon#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 7.9K stars
๐Ÿ‘€ Watchers: 63
๐Ÿด Forks: 1.1K forks

๐Ÿ’ป Programming Languages: TypeScript - JavaScript - Shell - Dockerfile

๐Ÿท๏ธ Related Topics:
#security_audit #penetration_testing #pentesting #security_automation #security_tools


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: litebox

๐Ÿ“ Description: A security-focused library OS supporting kernel- and user-mode execution

๐Ÿ”— Repository URL: https://github.com/microsoft/litebox

๐Ÿ“– Readme: https://github.com/microsoft/litebox#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 914 stars
๐Ÿ‘€ Watchers: 11
๐Ÿด Forks: 40 forks

๐Ÿ’ป Programming Languages: Rust - C - JavaScript - CSS - Assembly - Python

๐Ÿท๏ธ Related Topics: Not available

==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: heretic

๐Ÿ“ Description: Fully automatic censorship removal for language models

๐Ÿ”— Repository URL: https://github.com/p-e-w/heretic

๐Ÿ“– Readme: https://github.com/p-e-w/heretic#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 4.5K stars
๐Ÿ‘€ Watchers: 27
๐Ÿด Forks: 441 forks

๐Ÿ’ป Programming Languages: Python

๐Ÿท๏ธ Related Topics:
#transformer #llm #abliteration


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: MiniCPM-o

๐Ÿ“ Description: A Gemini 2.5 Flash Level MLLM for Vision, Speech, and Full-Duplex Multimodal Live Streaming on Your Phone

๐Ÿ”— Repository URL: https://github.com/OpenBMB/MiniCPM-o

๐Ÿ“– Readme: https://github.com/OpenBMB/MiniCPM-o#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 23.1K stars
๐Ÿ‘€ Watchers: 156
๐Ÿด Forks: 1.8K forks

๐Ÿ’ป Programming Languages: Python - Vue - JavaScript - Shell - Less - CSS

๐Ÿท๏ธ Related Topics:
#multi_modal #minicpm #minicpm_v


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: escrcpy

๐Ÿ“ Description: ๐Ÿ“ฑ Display and control your Android device graphically with scrcpy.

๐Ÿ”— Repository URL: https://github.com/viarotel-org/escrcpy

๐ŸŒ Website: https://viarotel.eu.org/

๐Ÿ“– Readme: https://github.com/viarotel-org/escrcpy#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 7.7K stars
๐Ÿ‘€ Watchers: 48
๐Ÿด Forks: 563 forks

๐Ÿ’ป Programming Languages: JavaScript - Vue - TypeScript - Roff - CSS - VBScript

๐Ÿท๏ธ Related Topics:
#android #windows #macos #linux #screenshots #gui #recording #screensharing #mirroring #hacktoberfest #scrcpy #scrcpy_engine #gnirehtet #genymobile #scrcpy_gui #hacktoberfest2025 #hacktoberfest2026


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: awesome-claude-skills

๐Ÿ“ Description: A curated list of awesome Claude Skills, resources, and tools for customizing Claude AI workflows

๐Ÿ”— Repository URL: https://github.com/ComposioHQ/awesome-claude-skills

๐Ÿ“– Readme: https://github.com/ComposioHQ/awesome-claude-skills#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 31.5K stars
๐Ÿ‘€ Watchers: 244
๐Ÿด Forks: 3K forks

๐Ÿ’ป Programming Languages: Python - JavaScript - Shell

๐Ÿท๏ธ Related Topics:
#automation #skill #mcp #saas #cursor #codex #workflow_automation #ai_agents #claude #rube #gemini_cli #composio #antigravity #agent_skills #claude_code


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: gitbutler

๐Ÿ“ Description: The GitButler version control client, backed by Git, powered by Tauri/Rust/Svelte

๐Ÿ”— Repository URL: https://github.com/gitbutlerapp/gitbutler

๐ŸŒ Website: https://gitbutler.com

๐Ÿ“– Readme: https://github.com/gitbutlerapp/gitbutler#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 17.7K stars
๐Ÿ‘€ Watchers: 47
๐Ÿด Forks: 768 forks

๐Ÿ’ป Programming Languages: Rust - Svelte - TypeScript - Shell - CSS - JavaScript

๐Ÿท๏ธ Related Topics:
#github #git #tauri


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
One day or Day one. You decide.

Data Science edition.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜† : I will learn SQL.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Download mySQL Workbench.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will build my projects for my portfolio.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Look on Kaggle for a dataset to work on.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will master statistics.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Start the free Khan Academy Statistics and Probability course.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will learn to tell stories with data.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Install Tableau Public and create my first chart.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will become a Data Scientist.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Update my resume and apply to some Data Science job postings.


https://t.iss.one/DataScienceN
โค6
Forwarded from Learn Python Hub
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.iss.one/addlist/8_rRW2scgfRhOTc0

โœ… https://t.iss.one/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
Here is a powerful ๐—œ๐—ก๐—ง๐—˜๐—ฅ๐—ฉ๐—œ๐—˜๐—ช ๐—ง๐—œ๐—ฃ to help you land a job!

Most people who are skilled enough would be able to clear technical rounds with ease.

But when it comes to ๐—ฏ๐—ฒ๐—ต๐—ฎ๐˜ƒ๐—ถ๐—ผ๐—ฟ๐—ฎ๐—น/๐—ฐ๐˜‚๐—น๐˜๐˜‚๐—ฟ๐—ฒ ๐—ณ๐—ถ๐˜ rounds, some folks may falter and lose the potential offer.

Many companies schedule a behavioral round with a top-level manager in the organization to understand the culture fit (except for freshers).

One needs to clear this round to reach the salary negotiation round.

Here are some tips to clear such rounds:

1๏ธโƒฃ Once the HR schedules the interview, try to find the LinkedIn profile of the interviewer using the name in their email ID.

2๏ธโƒฃ Learn more about his/her past experiences and try to strike up a conversation on that during the interview.

3๏ธโƒฃ This shows that you have done good research and also helps strike a personal connection.

4๏ธโƒฃ Also, this is the round not just to evaluate if you're a fit for the company, but also to assess if the company is a right fit for you.

5๏ธโƒฃ Hence, feel free to ask many questions about your role and company to get a clear understanding before taking the offer. This shows that you really care about the role you're getting into.

๐Ÿ’ก ๐—•๐—ผ๐—ป๐˜‚๐˜€ ๐˜๐—ถ๐—ฝ - Be polite yet assertive in such interviews. It impresses a lot of senior folks.


https://t.iss.one/DataScienceN
โค5
๐Ÿ”ฅ Trending Repository: monty

๐Ÿ“ Description: A minimal, secure Python interpreter written in Rust for use by AI

๐Ÿ”— Repository URL: https://github.com/pydantic/monty

๐Ÿ“– Readme: https://github.com/pydantic/monty#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 2.2K stars
๐Ÿ‘€ Watchers: 17
๐Ÿด Forks: 55 forks

๐Ÿ’ป Programming Languages: Rust - Python - TypeScript

๐Ÿท๏ธ Related Topics: Not available

==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
๐Ÿ”ฅ Trending Repository: addons

๐Ÿ“ Description: โž• Docker add-ons for Home Assistant

๐Ÿ”— Repository URL: https://github.com/home-assistant/addons

๐ŸŒ Website: https://home-assistant.io/hassio/

๐Ÿ“– Readme: https://github.com/home-assistant/addons#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 1.9K stars
๐Ÿ‘€ Watchers: 73
๐Ÿด Forks: 1.8K forks

๐Ÿ’ป Programming Languages: Shell - Dockerfile - Groovy - HTML - Python - C - CMake

๐Ÿท๏ธ Related Topics:
#docker #iot #automation #home #hacktoberfest


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
๐Ÿ”ฅ Trending Repository: gh-aw

๐Ÿ“ Description: GitHub Agentic Workflows

๐Ÿ”— Repository URL: https://github.com/github/gh-aw

๐ŸŒ Website: https://gh.io/gh-aw

๐Ÿ“– Readme: https://github.com/github/gh-aw#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 609 stars
๐Ÿ‘€ Watchers: 4
๐Ÿด Forks: 65 forks

๐Ÿ’ป Programming Languages: Go - JavaScript - Shell

๐Ÿท๏ธ Related Topics:
#ci #actions #copilot #codex #cai #github_actions #gh_extension #claude_code


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
๐Ÿ”ฅ Trending Repository: claude-code-pm-course

๐Ÿ“ Description: Interactive course teaching Product Managers how to use Claude Code effectively

๐Ÿ”— Repository URL: https://github.com/carlvellotti/claude-code-pm-course

๐ŸŒ Website: https://claude-code-pm-course.vercel.app

๐Ÿ“– Readme: https://github.com/carlvellotti/claude-code-pm-course#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 669 stars
๐Ÿ‘€ Watchers: 11
๐Ÿด Forks: 139 forks

๐Ÿ’ป Programming Languages: MDX - HTML - Python - JavaScript - Shell - TypeScript - CSS

๐Ÿท๏ธ Related Topics: Not available

==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: free-llm-api-resources

๐Ÿ“ Description: A list of free LLM inference resources accessible via API.

๐Ÿ”— Repository URL: https://github.com/cheahjs/free-llm-api-resources

๐Ÿ“– Readme: https://github.com/cheahjs/free-llm-api-resources#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 8.5K stars
๐Ÿ‘€ Watchers: 138
๐Ÿด Forks: 840 forks

๐Ÿ’ป Programming Languages: Python

๐Ÿท๏ธ Related Topics:
#ai #gemini #openai #llama #claude #llm


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: claude-skills

๐Ÿ“ Description: 65 Specialized Skills for Full-Stack Developers. Transform Claude Code into your expert pair programmer.

๐Ÿ”— Repository URL: https://github.com/Jeffallan/claude-skills

๐Ÿ“– Readme: https://github.com/Jeffallan/claude-skills#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 498 stars
๐Ÿ‘€ Watchers: 6
๐Ÿด Forks: 56 forks

๐Ÿ’ป Programming Languages: Python - JavaScript - HTML - Astro - Shell - Makefile

๐Ÿท๏ธ Related Topics:
#ai_agents #claude #claude_code #claude_skills #claude_marketplace


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
๐Ÿ”น DATA SCIENCE โ€“ INTERVIEW REVISION SHEET*

*1๏ธโƒฃ What is Data Science?*
> โ€œData science is the process of using data, statistics, and machine learning to extract insights and build predictive or decision-making models.โ€

Difference from Data Analytics:
- Data Analytics โ†’ past & present (what/why)
- Data Science โ†’ future & automation (what will happen)

*2๏ธโƒฃ Data Science Lifecycle (Very Important)*
1. Business problem understanding
2. Data collection
3. Data cleaning & preprocessing
4. Exploratory Data Analysis (EDA)
5. Feature engineering
6. Model building
7. Model evaluation
8. Deployment & monitoring
Interview line:
> โ€œI always start from business understanding, not the model.โ€

*3๏ธโƒฃ Data Types*
- Structured โ†’ tables, SQL
- Semi-structured โ†’ JSON, logs
- Unstructured โ†’ text, images

*4๏ธโƒฃ Statistics You MUST Know*
- Central tendency: Mean, Median (use when outliers exist)
- Spread: Variance, Standard deviation
- Correlation โ‰  causation
- Normal distribution
- Skewness (income โ†’ right skewed)

*5๏ธโƒฃ Data Cleaning & Preprocessing*
Steps you should say in interviews:
1. Handle missing values
2. Remove duplicates
3. Treat outliers
4. Encode categorical variables
5. Scale numerical data
Scaling:
- Min-Max โ†’ bounded range
- Standardization โ†’ normal distribution

*6๏ธโƒฃ Feature Engineering (Interview Favorite)*
> โ€œFeature engineering is creating meaningful input variables that improve model performance.โ€
Examples:
- Extract month from date
- Create customer lifetime value
- Binning age groups

*7๏ธโƒฃ Machine Learning Basics*
- Supervised learning: Regression, Classification
- Unsupervised learning: Clustering, Dimensionality reduction

*8๏ธโƒฃ Common Algorithms (Know WHEN to use)*
- Regression: Linear regression โ†’ continuous output
- Classification: Logistic regression, Decision tree, Random forest, SVM
- Unsupervised: K-Means โ†’ segmentation, PCA โ†’ dimensionality reduction

*9๏ธโƒฃ Overfitting vs Underfitting*
- Overfitting โ†’ model memorizes training data
- Underfitting โ†’ model too simple
Fixes:
- Regularization
- More data
- Cross-validation

*๐Ÿ”Ÿ Model Evaluation Metrics*
- Classification: Accuracy, Precision, Recall, F1 score, ROC-AUC
- Regression: MAE, RMSE
Interview line:
> โ€œMetric selection depends on business problem.โ€

*1๏ธโƒฃ1๏ธโƒฃ Imbalanced Data Techniques*
- Class weighting
- Oversampling / undersampling
- SMOTE
- Metric preference: Precision, Recall, F1, ROC-AUC

*1๏ธโƒฃ2๏ธโƒฃ Python for Data Science*
Core libraries:
- NumPy
- Pandas
- Matplotlib / Seaborn
- Scikit-learn
Must know:
- loc vs iloc
- Groupby
- Vectorization

*1๏ธโƒฃ3๏ธโƒฃ Model Deployment (Basic Understanding)*
- Batch prediction
- Real-time prediction
- Model monitoring
- Model drift
Interview line:
> โ€œModels must be monitored because data changes over time.โ€

*1๏ธโƒฃ4๏ธโƒฃ Explain Your Project (Template)*
> โ€œThe goal was _. I cleaned the data using _. I performed EDA to identify _. I built _ model and evaluated using _. The final outcome was _.โ€

*1๏ธโƒฃ5๏ธโƒฃ HR-Style Data Science Answers*
Why data science?
> โ€œI enjoy solving complex problems using data and building models that automate decisions.โ€
Biggest challenge:
โ€œHandling messy real-world data.โ€
Strength:
โ€œStrong foundation in statistics and ML.โ€

*๐Ÿ”ฅ LAST-DAY INTERVIEW TIPS*
- Explain intuition, not math
- Donโ€™t jump to algorithms immediately
- Always connect model โ†’ business value
- Say assumptions clearly
โค4